
If you enjoy this free book, please leave a
review on Amazon, or buy a paper copy

for yourself or a friend.

https://www.amazon.com/Machine-Made-this-Book-Sketches/dp/0957671121/
https://www.amazon.com/Machine-Made-this-Book-Sketches/dp/0957671121/

A MACHINE MADE THIS BOOK

ten sketches of computer science

How do we decide where to put ink on a page to draw letters and
pictures? How can computers represent all the world’s languages
and writing systems? What exactly is a computer program, what
and how does it calculate, and how can we build one? Can we
compress information to make it easier to store and quicker to
transmit? How do newspapers print photographs with grey tones
using just black ink and white paper? How are paragraphs laid out
automatically on a page and split across multiple pages?

In A Machine Made this Book, using examples from the publish-
ing industry, John Whitington introduces the fascinating discipline
of Computer Science to the uninitiated.

JOHN WHITINGTON founded a company which builds software for
electronic document processing. He studied, and taught, Computer
Science at Queens’ College, Cambridge. He has written textbooks
before, but this is his first attempt at something for the popular
audience.

A MACHINE MADE THIS
BOOK

ten sketches of computer science

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2016

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published March 2016

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-2-6 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

OCaml from the Very Beginning (Coherent, 2013)

More OCaml: Algorithms, Methods & Diversions (Coherent, 2014)

Contents

Preface v

1 Putting Marks on Paper 1

2 Letter Forms 15

3 Storing Words 27

4 Looking and Finding 41

5 Typing it In 53

6 Saving Space 65

7 Doing Sums 81

8 Grey Areas 97

9 Our Typeface 123

10 Words to Paragraphs 135

Solutions 147

Further Reading 169

Templates 173

Colophon 181

Index 183

v

Preface

It can be tremendously difficult for an outsider to understand why
computer scientists are interested in Computer Science. It is easy to
see the sense of wonder of the astrophysicist, or of the evolutionary
biologist or zoologist. We don’t know too much about the mathe-
matician, but we are in awe anyway. But Computer Science? Well,
we suppose it must have to do with computers, at least. “Com-
puter science is no more about computers than astronomy is about
telescopes”, the great Dutch computer scientist Edsger Dijkstra
(1930–2002), wrote. That is to say, the computer is our tool for ex-
ploring this subject and for building things in its world, but it is not
the world itself.

This book makes no attempt at completeness whatever. It is, as
the subtitle suggests, a set of little sketches of the use of computer
science to address the problems of book production. By looking
from different angles at interesting challenges and pretty solutions,
we hope to gain some insight into the essence of the thing.

I hope that, by the end, you will have some understanding of
why these things interest computer scientists and, perhaps, you
will find that some of them interest you.

vii

viii

Chapter 1 starts from nothing. We have a plain white page on
which to place marks in ink to make letters and pictures. How
do we decide where to put the ink? How can we draw a
convincing straight line? Using a microscope, we will look at
the effect of putting these marks on real paper using different
printing techniques. We see how the problem and its solutions
change if we are drawing on the computer screen instead of
printing on paper. Having drawn lines, we build filled shapes.

Chapter 2 shows how to draw letters from a realistic typeface –
letters which are made from curves and not just straight lines.
We will see how typeface designers create such beautiful
shapes, and how we might draw them on the page. A little
geometry is involved, but nothing which can’t be done with a
pen and paper and a ruler. We fill these shapes to draw letters
on the page, and deal with some surprising complications.

Chapter 3 describes how computers and communication equip-
ment deal with human language, rather than just the num-
bers which are their native tongue. We see how the world’s
languages may be encoded in a standard form, and how we
can tell the computer to display our text in different ways.

Chapter 4 introduces some actual computer programming, in the
context of a method for conducting a search through an exist-
ing text to find pertinent words, as we might when construct-
ing an index. We write a real program to search for a word
in a given text, and look at ways to measure and improve its
performance. We see how these techniques are used by the
search engines we use every day.

Chapter 5 explores how to get a bookful of information into the
computer to begin with. After a historical interlude concern-
ing typewriters and similar devices from the nineteenth and
early twentieth centuries, we consider modern methods. Then
we look at how the Asian languages can be typed, even those
which have hundreds of thousands or millions of symbols.

Chapter 6 deals with compression – that is, making words and
images take up less space, without losing essential detail.
However fast and capacious computers have become, it is still
necessary to keep things as small as possible. As a practical
example, we consider the method of compression used when
sending faxes.

ix

Chapter 7 introduces more programming, of a slightly different
kind. We begin by seeing how computer programs calculate
simple sums, following the familiar schoolboy rules. We then
build more complicated things involving the processing of
lists of items. By then end of the chapter, we have written a
substantive, real, program.

Chapter 8 addresses the problem of reproducing colour or grey
tone images using just black ink on white paper. How can we
do this convincingly and automatically? We look at histori-
cal solutions to this problem from medieval times onwards,
and try out some different modern methods for ourselves,
comparing the results.

Chapter 9 looks again at typefaces. We investigate the principal
typeface used in this book, Palatino, and some of its intricacies.
We begin to see how letters are laid out next to each other to
form a line of words on the page.

Chapter 10 shows how to lay out a page by describing how lines
of letters are combined into paragraphs to build up a block of
text. We learn how to split words with hyphens at the end of
lines without ugliness, and we look at how this sort of layout
was done before computers.

xi

Acknowledgments
The word list on 67 is from The Reading Teacher’s Book of Lists, Fourth Edition
(Fry, Kress & Fountoukidis), Prentice Hall, 2000. The literary quotations
used as example texts in Chapters 3 and the problems in Chapter 6 are
from John Le Carré’s Tinker, Tailor, Soldier, Spy. The text in Chapter 6 is from
Franz Kafka’s The Trial. Likewise in Chapter 10 from his Metamorphosis. The
hyphenation examples in Chapter 10 are from Micro-typographic extensions
to the TEX typesetting system, the PhD Thesis of Hàn Thế Thành, Faculty
of Informatics, Masaryk University, Brno, October 2000. The cover image
shows a Paige Compositor, courtesy of the United States Patent Office. The
drawing of French Curves on page 17 was modified from one created by
Joshua Certain. The tables on pages 35–39 appear by kind permission of
the Unicode Consortium. Unicode is a registered trademark of Unicode,
Inc. in the United States and other countries. The facsimile patents on
pages 54,55,56,57, and 59 were provided by the United States Patent and
Trademark Office. The picture of a Univac keyboard on page 60 appears
courtesy of the Retrocomputing Society of Rhode Island. The picture of
an IBM Model M keyboard on page 60 was taken by Sal Cangeloso. The
woodblock print on page 101 is Der Formschneider (The Blockcutter) from
the Panoplia omnium illiberalium mechanicarum (Book of Trades); it was
printed in 1568 and is in the British Museum. The picture on page 102 is a
detail of the engraving Der Kreuzbrunnen zu Marienbad published by Franz
Sartori in 1819. The engraving Melencolia I by Albrecht Dürer on page 103
is held at the Minneapolis Institute of Art. The image of a mezzotint plate
on page 104 was taken by David Ladmore. The picture of the mezzotint
print by Franz Kruger on page 105 is courtesy of the Image Permanence
Institute. The Rembrandt etching The Hundred Guilder Print on page 106 is
held at the Rijksmuseum in Amsterdam. The photograph of film grain on
page 108 was provided by Keith Cooper. The electron microscope image of
film grain on the same page is courtesy of the University of Rochester. The
halftoned picture of the Steinway Hall on East 14th Street in Manhattan
on page 109 is from The Daily Graphic, December 2nd, 1873. The examples
of Zapfino alternate glyphs on page 127 are based on the instructions
of Dario Taraborelli. The tables of Palatino Linotype on pages 131–133
were produced using the eponymous typeface from Monotype GmbH. The
sketches of metal typesetting on pages 142–143 are from an unknown early
20th century book. The photograph on page 144 was taken by Tom Garnett
at the Print Shop of the Cambridge Museum of Technology, Cambridge,
UK. All other photographs and images were created by the author. Scrabble
is a trademark of Hasbro, Inc.

A MACHINE MADE THIS BOOK

ten sketches of computer science

Chapter 1

Putting Marks on Paper

In this book, we shall need very little formal mathematics, but if
we are considering the arrangement of letters and words and lines
and pictures on the page, we shall need a way of discussing the
idea of position – that is to say, where something is, rather than just
what it is. Thankfully, our paper is flat and rectangular, so we can
use the simple coordinates we learned in school. In other words,
we just measure how far we are above the bottom left corner of
the page, and how far to the right. We can write this as a pair of
numbers; for example, the coordinate (6, 2) is six lengths right, and
two lengths up from the bottom-left of the page. It is convention to
use x to denote the across part of the coordinate, and y to denote
the up part. These are known as Cartesian coordinates, named for
René Descartes (1596–1659) – the Latin form of his name is Renatus
Cartesius, which is a little closer to “Cartesian”. The idea was
discovered independently, at about the same time, by Pierre de
Fermat (1601–1665). Here is the coordinate (6, 2) drawn on a little
graph, with axes for x and y, and little marks on the axes to make it
easier to judge position by eye:

0 1 2 3 4 5 6 7
0

1

2

3

x

y (6, 2)

1

2 Chapter 1. Putting Marks on Paper

We can assign units if we like, such as centimetres or inches, to
define what these “lengths” are. In publishing, we like to use a little
unit called a point or pt, which is 1/72 of an inch. This is convenient
because it allows us to talk mostly using whole numbers (it is easier
to talk about 450pt than about 6.319 inches). We need such small
units because the items on our page are quite small and must be
carefully positioned (look at the writing on this page, and see how
each tiny little shape representing a character is so carefully placed)
Here is how an A4 page (which is about 595 pts wide and about
842 pts tall) might look:

Chapter 1

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue
eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc.
Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,
malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec
varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor
lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae
ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut
massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.
Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at,
tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy
pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac
quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas
lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi
blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla
vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent
euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar
lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis
eu massa.

1

0 200 400 600
0

200

400

600

800

x

y

You can see that the chapter heading “Chapter 1” begins at
about (80, 630). Notice that the coordinates of the bottom left of
the page (called the origin) are, of course, (0, 0). The choice of the
bottom left as our origin is somewhat arbitrary – one could make an
argument that the top left point, with vertical positions measured
downwards, is a more appropriate choice, at least in the West where
we read top to bottom. Of course, one could also have the origin at
the top right or bottom right, with horizontal positions measuring
leftward.

We shall be using such coordinates to describe the position and
shape of each part of each letter, each word, and each paragraph, as
well as any drawings or photographs to be placed on the page. We
will see how lines can be drawn between coordinates, and how to
make the elegant curves which form the letters in a typeface.

Once we have determined what shapes we wish to put on each
page, we must consider the final form of our document. You may

Chapter 1. Putting Marks on Paper 3

be reading this as a physical paperback book, printed and bound by
very expensive equipment. You may be reading it as an electronic
document (such as a PDF file) on your computer, tablet, or smart-
phone. Or, you may be reading it on some sort of special-purpose
eBook reader. Each of these scenarios has different characteristics.
Every page of the printed book is made up of hundreds of millions
of little dots, each of which may be white (no ink) or black (ink).
We cannot typically see the dots with the naked eye. The number
of dots is known as the resolution (from the word “resolve”). A low
resolution image is one where it is easy for the eye to resolve (that is,
distinguish) the individual dots. A high resolution image has dots
so small and tightly packed that the naked eye cannot distinguish
them.

A high resolution printer, such as the one printing the physical
copy of this book, may have as many as 600 or 1200 dots per inch
(dpi); that is to say, between 600× 600 = 360,000 and 1200× 1200 =
1,440,000 dots per square inch. The screen of a computer or tablet
may only have 100 to 300 dpi, but it can display many shades of
grey and colours. If the resolution is too low, we see blocky images.
Here is part of a capital letter A in black and white at 60 dpi, 30 dpi,
and 15 dpi:

We have used square dots here, such as may be used on a mod-
ern computer screen (we call them pixels, which is short for “picture
elements”). For viewing a page on a typical tablet computer, we
might have only 2048× 1536 = 5,193,728 dots on the whole screen,
but they may be colours or greys, as well as black or white. When
printing a book like this, we have many more dots, but only black
ink. Let us say, for example, that we have a US Letter page (8.5
inches by 11 inches) and we are printing at a resolution of 1200
dpi. We have 1200× 1200 = 1,440,000 dots per square inch, so we
have 1200× 1200× 8.5× 11, or 134,640,000 dots on the page, each
of which may be black or white.

Here are some photographs, taken under a microscope, of letter-
ing as it appears in high quality printing, and on the much lower
quality, cheaper newsprint used for the daily newspaper:

4 Chapter 1. Putting Marks on Paper

The upper row shows high-resolution printing of lettering on
coated paper, such as might be used for a glossy pamphlet, under a
microscope at 20x magnification, and the same at 400x magnifica-
tion. The lower row is standard text of the London Times printed on
newsprint at 20x magnification and the same at 400x magnification.

The home or office laser printer works by using a laser to prepare
a roller in such a way that a powder will adhere only to areas where
the laser has not been shone. The powder (called toner) is then
transferred from the roller to paper, and bonded to it by heat. The
particles of toner behave rather differently from ink:

On the left is a word printed in 1pt, 2pt, 4pt, 6pt, and 8pt text
under a microscope, with magnification at 20x. On the right, the

Chapter 1. Putting Marks on Paper 5

2pt word with magnification at 400x (a typeface of a given size is
roughly that number of points tall, say, for its capital letters.)

All these dots form a huge amount of information which is
costly and difficult to manipulate. So, we will normally store our
pages in a more structured way – some paragraphs, which are made
of words, which are made of letters, which are drawn from some
typeface, which is defined using lines and curves. The hundreds
of millions of dots which will finally make up the page only exist
temporarily as the image is printed, or placed onto the screen. (The
exception, of course, is when we use photographs as part of our
page – the colour of each dot is captured by the camera, and we
must maintain it in that form.) Until recently the storage, commu-
nication, and manipulation of high resolution photographs was
a significant problem. The storage, communication, and manipu-
lation of high resolution video still is – imagine how many little
coloured dots make up a still image, then multiply by 25 or 50
images per second for the 2 hours (7200 seconds) a feature film
lasts.

We have talked only about single dots. However, we shall need
lines, curves, and filled shapes to build our page. Suppose that we
wish to draw a line. How can we work out which dots to paint black
to represent the line? Horizontal and vertical lines seem easy – we
just put ink on each dot in that row or column, for the whole length
of the line. If we want a thicker line, we can ink multiple rows or
columns either side of the original line. But there are many useful
lines other than the horizontal and vertical ones. To begin, we
shall need a way to define a line. We can just use two coordinates
– those of the points at either end. For example, here is the line
(1, 1)—(6, 3):

0 1 2 3 4 5 6 7
0

1

2

3

x

y
(6, 3)

(1, 1)

In mathematics, we would usually consider a line to be of infi-
nite length, and so this is really a line segment, but we shall just call it
a line. Notice that this line could equally be defined as (6, 3)—(1, 1).

As a first strategy, let us try colouring in one dot in each column
from column 1 to column 6, where the line is present. We will

6 Chapter 1. Putting Marks on Paper

choose the dot whose centre is closest to the line in each case:

0 1 2 3 4 5 6 7
0

1

2

3

x

y

Admittedly, this does not look much like a line. But if we choose
a higher resolution for a line of the same slope, and so draw more
and smaller dots, we see a better approximation:

0 5 10 15
0
2
4
6
8

10

x

y

Now, you may wonder why we chose to draw one dot in each
column instead of one dot in each row. For example, instead of
putting one dot in each of the columns from column 1 to column
6, we might put one dot in each of the rows from row 1 to row 3,
again choosing the one in that row nearest the actual line. For this
shallow line, doing so would lead to a most unpleasant result:

0 1 2 3 4 5 6 7
0

1

2

3

x

y

If the line is steeper than 45°, the converse is true (draw it on
paper to see). So, we choose to put one black dot in each row instead
of in each column in this case. Horizontal and vertical lines are
simply special cases of this general method – for the vertical case
we draw one dot in each row; for the horizontal case one dot in

Chapter 1. Putting Marks on Paper 7

each column. For the line at exactly 45°, the two methods (row
and column) produce the same result. Here is an illustration of the
sorts of patterns of dots we see for lines of various slopes using this
improved procedure:

This image is 100 dots tall and wide. The results are not terribly
good, for two reasons. First, at low resolutions, the individual dots
are clearly visible. Moreover, the density of the lines varies. A
horizontal or vertical line of length 100 will have 100 dots over its
length, but the 45° line has 100 dots over a length of about 141 (the
diagonal of a square with sides of length 100 is

√
2× 100), and so

its density of dots is lower, and it appears less dark.
When we are using a screen, rather than paper, to display our

line, we can take advantage of the ability to use more than just black
and white. And so, we can use varying shades of grey: dots which
are right on the line are very dark grey, dots which are just close are
lighter grey. Here is a line drawn in this manner, at three scales:

We can see that the line is smoother than would otherwise be the
case. If you are reading this book on an electronic device, you may
be able to see this effect on the text or images with a magnifying
glass. Here is another example, with a more complex, filled shape,
which might be used to represent an ampersand character:

8 Chapter 1. Putting Marks on Paper

&
On the left is an idealised high resolution shape. In the middle,

just black and white at a lower resolution. On the right, prepared for
display on a screen supporting grey as well as black and white, at
the same lower resolution. This use of greys is known as antialiasing,
since the jagged edges in low resolution lines are known as aliasing.
This term originated in the field of signal processing and is used to
describe problems stemming from low-resolution versions of high-
resolution signals. Here is a photograph, taken under a microscope,
of such an antialiased line on a modern computer screen:

The left image is magnified 20x; the right image 400x. The
rectangular shapes you can see in the images are the separate Red,
Green, and Blue sub-pixels, which a monitor uses to build up all
the different colours and greys it may need (the monitor makes a
picture by emitting light and Red, Green, and Blue are the primary
colours of light.)

What might a reasonable minimum resolution be? To simplify,
let’s return to the scenario where we only have black and white
dots – no antialiasing. The resolution required to make the page
look smooth depends on the distance at which the typical viewer
sees it. For a computer screen, this might be twenty inches. For a
smartphone, eight inches. For a billboard, twenty or fifty feet (if
you have never walked right up to a billboard and looked at the
printing, do so – it is surprisingly coarse.) The limit of the human
optical system’s ability to distinguish the colour of adjacent dots,

Chapter 1. Putting Marks on Paper 9

or their existence or absence, is the density of light sensitive cells
on the retina. At a distance of 12 inches, a density of 600 dots per
inch on the printed page may be required. For a billboard, we may
only need 20 or 50 dots per inch. On a screen, antialiasing allows
us to use a lower resolution than we might otherwise need.

We have seen how to draw lines between points, and so we
can build shapes by chaining together multiple lines. For exam-
ple, the lines (1, 1)—(10, 1), (10, 1)—(10, 10), (10, 10)—(1, 10), and
(1, 10)—(1, 1) form a square (you can draw it on paper if you wish).
We might define this more concisely as (1, 1)—(10, 1)—(10, 10)—
(1, 10)—(1, 1). However, if we wish to produce a filled shape (such
as a letter in a word) we would have to make it up from lots of
little horizontal lines or lots of little vertical ones, to make sure that
every dot we wanted to be covered was covered. We should like
to automate this process, so as to avoid manually specifying each
part of the filled section. Consider the following child’s picture of a
house, made from several lines:

Notice that we have built three different sets of joined-up lines:
one for the outline of the house, and two more, one for each window.
Considering the bottom-left dot to be at (0, 0), they are, in fact, these
sets of lines:

for the house outline
(1, 1)—(1, 10)—(9, 18)—(13, 14)—(13, 16)—(14, 16)—(14, 13)—
(17, 10)—(17, 1)—(11, 1)—(11, 5)—(7, 5)—(7, 1)—(1, 1)

for the left window
(3, 10)—(6, 10)—(6, 7)—(3, 7)—(3, 10)

for the right window
(12, 10)—(15, 10)—(15, 7)—(12, 7)—(12, 10)

10 Chapter 1. Putting Marks on Paper

Now, we can proceed to design a method to fill the shape. For
each row of the image, we begin on the left, and proceed rightward
pixel-by-pixel. If we encounter a black dot, we remember, and enter
filling mode. In filling mode, we fill every dot black, until we hit
another dot which was already black – then we leave filling mode.
Seeing another already-black dot puts us back into filling mode,
and so on.

In the image above, two lines have been highlighted. In the first,
we enter the shape once at the side of the roof, fill across, and then
exit it at the right hand side of the roof. In the second, we fill a
section, exit the shape when we hit the doorframe, enter it again at
the other doorframe – filling again – and finally exit it. If we follow
this procedure for the whole image, the house is filled as expected.

The image on the left shows the new dots in grey; that on the
right the final image. Notice that the windows and door did not
cause a problem for our method.

We have now looked at the very basics of how to convert de-
scriptions of shapes into patterns of dots suitable for a printer or
screen. In the next chapter, we will consider the more complicated

Chapter 1. Putting Marks on Paper 11

shapes needed to draw good typefaces, which consist not only of
straight lines, but also curves.

12 Chapter 1. Putting Marks on Paper

Problems

Solutions on page 147.

Grids for you to photocopy or print out have been provided on
page 173. Alternatively, use graph paper or draw your own grids.

1. Give sequences of coordinates which may be used to draw
these sets of lines.

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

2. Draw these two sequences of coordinates on separate 20x20
grids, with lines between the points. What do they each
show?

(5,19)—(15,19)—(15,16)—(8,16)—(8,12)—(15,12)—(15,9)—
(8,9)—(8,5)—(15,5)—(15,2)—(5,2)—(5,19)

(0,5)—(10,10)—(5,0)—(10,3)—(15,0)—(10,10)—(20,5)—
(17,10)—(20,15)—(10,10)—(15,20)—(10, 17)—(5, 20)—
(10,10)—(0,15)—(3,10)—(0,5)

3. Given the following lines on 20x20 grids, select pixels to ap-
proximate them.

Chapter 1. Putting Marks on Paper 13

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

4. On 20x20 grids, choose pixels to fill in to approximate the
following characters. Keep them in proportion to one another.

X t ? ©

Chapter 2

Letter Forms

We have learnt how to build shapes from straight lines and how to
draw those lines onto a screen built from pixels or onto paper using
ink. If we only ever drew our shapes at one size, we could just use
enough tiny little straight lines to build up any shape, including
curved ones. However, we might like to draw our shapes at dif-
ferent sizes, or display them on devices with different resolutions.
(There may be 1200 dots per inch on a commercial printer, for ex-
ample, but only 200 dots per inch on a computer screen.) We don’t
really want to store a hundred little lines and their coordinates to
describe a circle – we should just like to say “a circle of radius 20pt
at coordinates (200, 300)”, for example.

Consider the shapes which make up a letter of a typeface –
Palatino, for example, which is used in this book. A typeface is a
collection of little shapes, one for each letter, which are arranged on
the page in lines. We must be able to scale them to different sizes
(large, for example, for chapter headings, or smaller for footnotes).
They most often contain curves as well as straight lines. Consider
the letter C, which has curved parts. The following diagram shows
the effect of increasing the size of a letter C designed using only
lines:

15

16 Chapter 2. Letter Forms

The straight lines survive scaling intact, but the curves are
spoiled. Almost as simple as drawing lines (at least on paper)
is drawing circles – we can do this with a pair of compasses. We
could use these sections of circles (or arcs) to build our letter C
instead:

This suffices only for simple letter forms. Imagine trying to
draw complicated curves, such as the ampersand character, using
just a pair of compasses:

&
Circular arcs don’t help much here (not every curve is part of a
circle). We would need dozens if not a hundred pieces of circles to
accurately follow the shape of the letter.

Before computers, the solution was a set of french curves, which
are shaped pieces of wood, rubber, or plastic whose contours are
composed of curves of varying tightness. The curves are manipu-
lated by moving and rotating them, until an appropriate contour
is found for part of the desired shape. Sometimes this is done by
starting with points through which the curve must pass, making it
easier to line up the forms. A complex curve will be made up by

Chapter 2. Letter Forms 17

using several different parts of the french curves, making sure that
the joins between the chosen sections are smooth. Here is a typical
set of french curves:

The curve sections used and points passed through can be
recorded, so that the shape may be reproduced. Such curves are no
longer used by draughtsmen, who use computers instead, but they
are still used by, for example, dressmakers. A larger, less tightly
curved set of shapes were formerly used for the design of boat hulls.
They are known as ship curves.

How might we apply these techniques to computerised draw-
ing? Two Frenchmen in the car industry, Pierre Bézier (1910–1999)
at Renault and Paul de Casteljau (1930–) at Citroën, are respon-
sible for the development of a kind of curve which is easy and
predictable for the designer to work with, can be used to describe
many useful sorts of shapes, and is amenable to manipulation and
display by computer. They are known as Bézier curves.

We have seen that a straight line may be defined simply by its
two end-points, for example (1, 3)—(6, 5). A Bézier curve is defined
by four points: its two end-points, and two other points called
control points, one for each end-point. These control points, which
may be positioned anywhere, are used to pull the curve away from
the straight line between the end-points. The further away the
control points, the more the curve deviates from the straight line
between its end-points. The following drawing exhibits several
Bézier curves. (We have shown the control points linked to their
respective end-points with dotted lines.)

18 Chapter 2. Letter Forms

Note that a Bézier curve may bend one way or two, and that
it may also be straight. The designer can move the control points
interactively to build a wide range of curved lines. If you have
access to an interactive graphics program on your computer, use it
to play with the control points of a Bézier curve.

The curves we have made are still too simple to build a com-
plicated shape, such as our ampersand. To make such shapes, we
stitch together a number of such curves, making sure that an end-
point of one curve coincides with an end-point of the next, forming
a chain. A set of such chains for our ampersand is shown on the
following page.

There are three chains of curves, which we call paths, in the
ampersand: one for the main part and one each for the two “holes”.
There are 58 curves, of which 5 are straight lines. Note that several
of these curves join very smoothly to one another. This is a matter
of getting the control points for both curves in the right place: if
the control-point associated with the end-point of one curve is
arranged at 180° to the control point associated with the end-point
of the next, the join will be smooth, with no change in slope at
that point. Otherwise, there will be a definite corner. If the end-
points of two adjacent curves in the sequence do not coincide at
all, there will be a gap. (We call such curves discontinuous.) On
the following page are examples of discontinuous, continuous, and
smooth continuous Bézier curve pairs.

Chapter 2. Letter Forms 19

Bézier curve chains to draw an ampersand character

Discontinuous

Continuous Smooth continuous

20 Chapter 2. Letter Forms

How can we draw a Bézier curve on the screen or print it on
paper? It seems much more complicated than the straight lines we
have already drawn. It turns out, though, that there is a simple way:
we repeatedly split up the curve into smaller and smaller sections,
until each one is almost as flat as a line. Then, we can draw each of
those little lines using the method we developed in Chapter 1. How
do we perform such a subdivision? We could pick equally-spaced
points along the length of the curve. However, this would use too
many lines where the curve is open, and too few when the curve is
tight.

The following algorithm, devised by deCasteljau, is simple
enough to do on paper, and produces a subdivision of the curve
which is appropriate to the tightness of each part. Consider this
curve with end-points A and D and control points B and C:

A

B

C

D

A

B

C

D
E

F

G

Chapter 2. Letter Forms 21

We have drawn the halfway points E and F on the lines between
the end-points and control-points, and the point G halfway between
the control points: Now, we draw lines between E and G, and
between F and G, and find the halfway points H and I on those
lines:

A

B

C

D
E

F

G

H

I

Halfway between those is the point J, which is the mid-point
of the original curve, and the end-point of both new curves we are
creating:

A

B

C

D
E

F

G

H

I

J

The two final curves can now be seen. They are, on the left,
AEHJ and, on the right, JIFD:

22 Chapter 2. Letter Forms

This procedure works for any Bézier curve. We can proceed to
subdivide each of these smaller curves. Once we have subdivided
enough times, each of the little curves should be flat enough to be
roughly equivalent to a straight line between its end points. So we
can just draw each as a straight line, using the procedure described
in Chapter 1.

How do we decide when to stop the subdivision? If we stop after
a fixed number of stages, the difference between the treatment of
open and tight parts of the curve again becomes apparent. Instead,
we calculate a crude measure of the “flatness” of a curve, and finish
when that is less than a certain amount (say half the width of a
pixel). A line is then an appropriate substitute for that curve. Here
is a Bézier curve approximated by 1, 2, 4, 6, 7, 10, 13, 21, and 25
straight lines, as a result of repeated application of deCasteljau’s
procedure, stopping when each section is flat enough according to
our test:

Here is one such approximate measure of flatness, which is
relatively easy to calculate: the “height” of the curve. If the length
A + B in the diagram below is less than a given small number, we
can approximate the curve with a line. This length will always be
greater than the maximum deviation of the curve from the straight
line joining its end-points.

Chapter 2. Letter Forms 23

A

B

We rejected the use of circular arcs due to their inflexibility,
replacing them with Bézier curves, but there is an irony: no com-
bination of Bézier curves can exactly represent a circle, or circular
arc. However, we can get close enough. For a full circle, four Bézier
curves will get us there. The following diagram shows circles built
from two and four Bézier curves. Can you see the difference be-
tween the two “circles”?

There is a further complication: how do we draw a letter which
has a hole in it; for example, the letter O? We simply use two
discontinuous paths – one for the outer circle and one for the inner:

We have already looked, in the previous chapter, at a simple

24 Chapter 2. Letter Forms

way to fill closed shapes like this. Let us formalise our method a
little. When we fill such a shape, we fill any part where a line from
that point to somewhere outside the letter crosses the shape an odd
number of times. So, for our letter O, the inside path is not filled, as
required. This is known as the even-odd filling rule.

0

1

2

In the diagram above, we used a sloped line to count the cross-
ings, whereas in the previous chapter we followed a horizontal row
of pixels. It doesn’t really matter; the result is the same. We don’t
paint points in the middle of the O because there are two crossings
between there and outside the shape, and two is an even number.
However, the even-odd method does not suffice when the path
crosses itself. For example, consider the following self-crossing
path – our even-odd method gives a peculiar and unwanted result:

We can remedy this by changing the rule: now we shall look
at the direction of the path at each point, counting one for each
clockwise and minus one for each anti-clockwise crossing. We fill if
the number is non-zero and the result is the one we want:

Chapter 2. Letter Forms 25

Our line crosses two anti-clockwise lines and is therefore non-
zero (it has a count of 0− 1− 1 which is −2). We can apply this
rule to our O example too, but there is a problem: the inner hole is
filled too:

This can be fixed by reversing the direction of either of the two
paths. We now have a method which works for both cases:

Now that we have some understanding of how to draw lines
and curves onto paper or the screen, we will turn to the input,
storage, and manipulation of text itself, before returning to the
visual layout of the page later in the book.

26 Chapter 2. Letter Forms

Problems

Solutions on page 149.

1. Print out or trace the following Bézier curve, and divide it
into two, using the procedure of deCasteljau. You will need a
pencil and ruler.

2. If you have access to a computer, find a drawing program
with Bézier curves, and experiment to gain an intuitive un-
derstanding of how they are manipulated. At the time of
writing, one such free program is Inkscape, suitable for most
computers.

3. Fill in the following shapes using the even-odd filling rule and
again using the non-zero filling rule. The direction of each
line is indicated by the little arrows. The second and third
pictures contain two separate, overlapping square paths.

Chapter 3

Storing Words

Computers deal only in numbers. These numbers are processed
in various ways, with no particular meaning assigned to them.
However, we like to assign meaning, so we use a code to say which
number means what. For example, we might set 0 = A, 1 = B,
2 = C etc. This code exists only in our heads and our computer
programs – the computer itself still sees just numbers. From the
very beginning, computers have been used to process textual data,
to have textual input (from keyboards and similar devices), and to
have textual output (to “line printers”, which were a little like a
conventional typewriter but connected to a computer, rather than a
typist’s keyboard).

Methods of encoding letters as numbers for communication
have ancient origins. The Greek historian Polybius (c. 118 BC –
c. 200 BC) relates a number of methods of communication in The
Histories, including his own based on fire signals. The twenty-four
letters of the Greek alphabet would be placed in a grid and reduced,
in this way, to two numbers between one and five (the coordinates
of the number in the grid). Here is such a grid for English (I and J
must share a slot, since we have 26 letters):

27

28 Chapter 3. Storing Words

1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Now we can signal a letter using just two numbers, each be-
tween 1 and 5. For example the word POLYBIUS, taking row first
and column second, is 35–34–31–54–12–24–45–43. That is to say,
P is at row 3, column 5, and so on. Now, to transmit a letter, we
need only transmit two small numbers. Polybius’s system used two
banks of five torches. For P, we would set three torches to the up
position on the left, and five on the right. The recipient would then
set his torches the same way, to acknowledge receipt.

Computers, however, do not deal in fives – nor, indeed, in the
tens and hundreds we do ordinary mathematics in. At the lowest
level, we do not have ten things to choose from, or five, but just
two: on and off, yes and no, the presence of electricity or its absence.
However, computers can store and process millions or billions of
such numbers. They are known as bits, and a bit is either off or on.
We use the familiar digits 0 and 1 to represent them, 0 for off, 1 for
on. If we are to represent letters using only one bit, we don’t have
many:

Bits Number represented Letter represented
0 0 A
1 1 B

Luckily, since we have billions of such bits, we can use more
for each letter. When we add a bit, we double the number of bit
combinations – and so, the number of representable letters. Now
we have four:

Bits Number Letter
00 0 A
01 1 B
10 2 C
11 3 D

Chapter 3. Storing Words 29

Add another bit, and we have eight:

Bits Number Letter
000 0 A
001 1 B
010 2 C
011 3 D
100 4 E
101 5 F
110 6 G
111 7 H

If we use eight bits, we have 256 slots available, from 0 to 255,
which is enough, at least for all the usual characters and symbols in
English.

Bits Number
00000000 0
00000001 1
00000010 2
00000011 3
...

...
11111100 252
11111101 253
11111110 254
11111111 255

These 8-bit groups are very common, and so they have a special
name. We call them bytes. In fact, we normally talk about something
being 150 bytes in size, for example, rather than 1200 bits.

In the early days of computers, in the mid twentieth century,
each organisation building a computer would design it mostly from
scratch, with little regard for interoperability (that is, the ability for
computers to talk to one another using the same codes). Since they
might have been building the only computer in their country at the
time, this was hardly a concern. Due to the size of the memory in

30 Chapter 3. Storing Words

these machines, and the characteristics of their design, the number
of characters easily and efficiently represented was often small.
For example, there may have been only 64 slots. There may not
even be enough space for both uppercase and lowercase letters!
There had been standardised codes before, of course, for telegraph
communication, but they were largely disregarded. Let us take, as
an example, the code used in the EDSAC (Electronic Delay Storage
Automatic Calculator) computer at the University of Cambridge,
which was built between 1946 and 1949. There were two sets of 32
characters, each represented by the numbers 0 to 31 – the “letter
set” and the “figure set”. Two of the characters were reserved for
switching (or “shifting”) between the two sets. This is rather like
the shift key which we still use on keyboards today, to avoid having
to have two sets of keys (one for lowercase and one for uppercase).

Letter set

0 P 8 I 16 null 24 lf
1 Q 9 O 17 F 25 L
2 W 10 J 18 cr 26 X
3 E 11 figs 19 D 27 G
4 R 12 S 20 space 28 A
5 T 13 Z 21 H 29 B
6 Y 14 K 22 N 30 C
7 U 15 lets 23 M 31 V

Figure set

0 0 8 8 16 null 24 lf
1 1 9 9 17 $ 25)
2 2 10 ? 18 cr 26 /
3 3 11 figs 19 ; 27 #
4 4 12 “ 20 space 28 -
5 5 13 + 21 £ 29 ?
6 6 14 (22 , 30 :
7 7 15 lets 23 . 31 =

In these tables, figs and lets are the letter and figure shifts. The
cr and lf characters (as we shall see) are for moving the printing
position around. The null character is often used for demarcation
purposes; for example, to denote the end of a sequence of things.
Notice that the letters are not in order and that there are no lower-
case letters.

Chapter 3. Storing Words 31

In order that computers may talk to each other, and so that the
same program might run on different kinds of computers, standard
codes have been developed. Here is the so-called ASCII (American
Standard Code for Information Interchange) code, defined by an
international consortium in the 1960s:

0 NUL 32 space 64 @ 96 ‘

1 SOH 33 ! 65 A 97 a

2 STX 34 " 66 B 98 b

3 ETX 35 # 67 C 99 c

4 EOT 36 $ 68 D 100 d

5 ENQ 37 % 69 E 101 e

6 ACK 38 & 70 F 102 f

7 BEL 39 ’ 71 G 103 g

8 BS 40 (72 H 104 h

9 TAB 41) 73 I 105 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 FF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 |

29 GS 61 = 93] 125 }

30 RS 62 > 94 ˆ 126 ~

31 US 63 ? 95 _ 127 DEL

Some of these numbers represent real, printable characters, such
as 65 for A. Others represent special codes, such as 13 for CR, which
means Carriage Return and originally referred to the carriage of a
typewriter-like device returning to the beginning of the line. Char-
acter 10 for LF, which means Line Feed, refers to a similar device

32 Chapter 3. Storing Words

shifting the paper up one line, so we may begin printing the next.
The space character 32 moves one space across, without printing
anything. Most of the other special codes are of historical interest
only. We can work out the ASCII codes to represent a piece of text
by looking at each character and finding its number in the table.
Consider this quotation:

"It's the oldest question of all George.
Who can spy on the spies?"

-- John Le Carre, "Tinker, Tailor, Soldier, Spy"

Notice that we do not have the acute accent for the e in Mr Le
Carré’s name, and we have to use two dashes -- to make what
would normally be the – long dash. There must be a Carriage
Return, followed by a Line Feed at the end of each line, to move the
printing position to the beginning of the next line. We obtain the
following sequence of numbers:

" 34 l 108 s 115 T 84
I 73 space 32 p 112 i 105
t 116 G 71 i 105 n 110
’ 39 e 101 e 101 n 110
s 115 o 111 s 115 k 107
space 32 r 114 ? 63 e 101
t 116 g 103 " 34 r 114
h 104 e 101 cr 13 , 44
e 101 . 46 lf 10 space 32
space 32 cr 13 space 32 T 84
o 111 lf 10 space 32 a 97
l 108 space 32 space 32 i 105
d 100 w 119 - 45 l 108
e 101 h 104 - 45 o 111
s 115 o 111 space 32 r 114
t 116 space 32 J 74 , 44
space 32 c 99 o 111 space 32
q 113 a 97 h 104 S 83
u 117 n 110 n 110 o 111
e 101 space 32 space 32 l 108
s 115 s 115 L 76 d 100
t 116 p 112 e 101 i 105
i 105 y 121 space 32 e 101
o 111 space 32 C 67 r 114
n 110 o 111 a 97 , 44
space 32 n 110 r 114 space 32
o 111 space 32 r 114 S 83

Chapter 3. Storing Words 33

f 102 t 116 e 101 p 112
space 32 h 104 , 44 y 121
a 97 e 101 space 32 " 34
l 108 space 32 " 34

There are many more characters in the world than these, and
therefore many proprietary and competing methods for extending
this table. These include the addition of accented characters in the
western languages, and the use of other methods altogether for the
world’s other character sets; for example, the Cyrillic characters
of Russian, the Han characters of Chinese, and the many writing
methods of languages from the Indian subcontinent. We shall
examine some of these later in this chapter.

We have used the Carriage Return and Line Feed characters to
change the way our text is laid out (sometimes called formatting).
However, we have not seen how to change the typeface, type shape,
type thickness, or the size of the text. We should like to be able to intro-
duce such changes during the run of the text, as in this paragraph.
What is needed is a way to “mark up” the text with annotations
such as “make this word bold” or “change to type size 8pt here”.
Such methods are known as mark-up languages.

We could imagine a system where typing, for example, “This
word must be bold” into the computer would produce “This
word must be bold” on the printed page or electronic document.
We could use a symbol for each other kind of change – for example,
$ for italic – so we can write “$awful$” and get “awful”. A problem
arises, though. What if we wish to type a literal $ character? We
must escape the clutches of the special formatting symbols tem-
porarily. We do so using what is called an escape character. The most
common is \ (the so-called backslash). We say that any character im-
mediately following the escape character is to be rendered literally.
So, we can write “And $especially$ for \$10” to produce “And
especially for $10”. How then do we type a backslash itself? Well,
the backslash can escape itself just as well! We simply write \\. So,
the literal text “The \\ character” produces “The \ character”.

Let us look at how some common mark-up systems represent
the following piece of formatted text:

Section Title

This is the first paragraph, which
is important.

34 Chapter 3. Storing Words

We might, for example, extend our system of special characters in
the following fashion:

!Section Title!
This is the $first$ paragraph, which is *important*.

In the language used for web pages, the starting and ending
signifiers (they are called “tags”) are not symmetrical. A tag such
as begins bold, the tag ends it. We also use <i> and </i>
for italic, <h1> and </h1> for the heading, and <p> and </p> to
explicitly mark paragraphs. (In the previous method, we had just
used Carriage Returns and Line Feeds to mark them.) We may
write:

<h1>Section Title</h1>
<p>This is the <i>first</i>, which is important.</p>

In the typesetting language used for writing this book, mark-
up is introduced with the backslash escape character, followed by
a descriptive name of the change being made, with the contents
enclosed in curly brackets { and }:

\section{Section Title}
This is the \textit{first} paragraph, which is \textbf{important}.

Here, we have used \section{} for the section title, \textit{}
for italic, and \textbf{} for bold. These differing mark-up systems
are not just historical artefacts: they serve different purposes. The
requirements may be wholly different for a document to be printed,
to be put on the web, or to be viewed on an eBook reader.

We promised to talk about representing the world’s many lan-
guages and writing systems. Since 1989, there has been an inter-
national industrial effort, under the Unicode initiative, to encode
more than one hundred thousand characters, giving each a number,
and defining how they may be combined in valid ways. There
are more than a million total slots available for future use. It is
important to say that the Unicode system is concerned only with
assigning characters to numbers. It does not specify the shapes
those characters take: that is a matter for typeface designers. The
principle is one of separation of concerns: that each part of a com-
puter system should do one job well and allow interaction with
the other, similarly well-designed components. This is particularly
difficult for the Unicode system, which must navigate innumerable
cultural differences and a wide variety of possible uses.

The following five pages give some examples drawn from the
huge Unicode standard.

Chapter 3. Storing Words 35

The Unicode Standard 7.0, Copyright © 1991-2014 Unicode, Inc. All rights reserved.

007FC0 Controls and Basic Latin 0000

000 001 002 003 004 005 006 007

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

g

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

001A

001B

001C

001D

001E

001F

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

002A

002B

002C

002D

002E

002F

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

003A

003B

003C

003D

003E

003F

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

004A

004B

004C

004D

004E

004F

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

005A

005B

005C

005D

005E

005F

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

006A

006B

006C

006D

006E

006F

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

007A

007B

007C

007D

007E

007F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

UNICODE TABLE SHOWING THE ASCII CHARACTERS. They appear
in the same places as in the ASCII standard – that is to say, if ASCII
uses a particular number for the letter A, for example, so does the
Unicode assignment. This is called backward compatibility and is
hugely important in helping computer systems to continue to fit
together over multi-decade timescales.

36 Chapter 3. Storing Words

The Unicode Standard 7.0, Copyright © 1991-2014 Unicode, Inc. All rights reserved.

00FFC1 Controls and Latin-1 Supplement 0080

008 009 00A 00B 00C 00D 00E 00F

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

�

�

�

�

�

�

�

�

�

�

¡

¢

£

¤

¥

¦

§

¨

©

ª

«

¬

�

®

¯

°

±

²

³

´

μ

¶

·

¸

¹

º

»

¼

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

â

ã

ä

å

æ

ç

è

é

ê

ë

ì

í

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷

ø

ù

ú

û

ü

ý

þ

ÿ

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

008A

008B

008C

008D

008E

008F

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

009A

009B

009C

009D

009E

009F

00A0

00A1

00A2

00A3

00A4

00A5

00A6

00A7

00A8

00A9

00AA

00AB

00AC

00AD

00AE

00AF

00B0

00B1

00B2

00B3

00B4

00B5

00B6

00B7

00B8

00B9

00BA

00BB

00BC

00BD

00BE

00BF

00C0

00C1

00C2

00C3

00C4

00C5

00C6

00C7

00C8

00C9

00CA

00CB

00CC

00CD

00CE

00CF

00D0

00D1

00D2

00D3

00D4

00D5

00D6

00D7

00D8

00D9

00DA

00DB

00DC

00DD

00DE

00DF

00E0

00E1

00E2

00E3

00E4

00E5

00E6

00E7

00E8

00E9

00EA

00EB

00EC

00ED

00EE

00EF

00F0

00F1

00F2

00F3

00F4

00F5

00F6

00F7

00F8

00F9

00FA

00FB

00FC

00FD

00FE

00FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

WESTERN ACCENTED CHARACTERS AND COMMON SYMBOLS. This
is a subset of the common symbols and accented letters used in
Western languages. Notice that some of the letters come with their
accents attached, but some (for example, the cedilla in column 00B
row 8) are made to be attached to several letters. Again, this is for
historical reasons: for many years, it was not clear which was the
best approach, and now the two must sit alongside one another.
Such complexity is the disadvantage of backward compatibility.

Chapter 3. Storing Words 37

The Unicode Standard 7.0, Copyright © 1991-2014 Unicode, Inc. All rights reserved.

0E7FThai0E00

0E0 0E1 0E2 0E3 0E4 0E5 0E6 0E7

ก

ข

ฃ

ค

ฅ

ฆ

ง

จ

ฉ

ช

ซ

ฌ

ญ

ฎ

ฏ

ฐ

ฑ

ฒ

ณ

ด

ต

ถ

ท

ธ

น

บ

ป

ผ

ฝ

พ

ฟ

ภ

ม

ย

ร

ฤ

ล

ฦ

ว

ศ

ษ

ส

ห

ฬ

อ

ฮ

ฯ

ะ

$ ั

า

ำ

$ ิ

$ ี

$ ึ

$ ื

$ ุ

$ ู

$ ฺ

฿

เ

แ

โ

ใ

ไ

ๅ

ๆ

$ ็

$ ่

$ ้

$ ๊

$ ๋

$ ์

$ ํ

$ ๎

๏

๐

๑

๒

๓

๔

๕

๖

๗

๘

๙

๚

๛

0E01

0E02

0E03

0E04

0E05

0E06

0E07

0E08

0E09

0E0A

0E0B

0E0C

0E0D

0E0E

0E0F

0E10

0E11

0E12

0E13

0E14

0E15

0E16

0E17

0E18

0E19

0E1A

0E1B

0E1C

0E1D

0E1E

0E1F

0E20

0E21

0E22

0E23

0E24

0E25

0E26

0E27

0E28

0E29

0E2A

0E2B

0E2C

0E2D

0E2E

0E2F

0E30

0E31

0E32

0E33

0E34

0E35

0E36

0E37

0E38

0E39

0E3A

0E3F

0E40

0E41

0E42

0E43

0E44

0E45

0E46

0E47

0E48

0E49

0E4A

0E4B

0E4C

0E4D

0E4E

0E4F

0E50

0E51

0E52

0E53

0E54

0E55

0E56

0E57

0E58

0E59

0E5A

0E5B

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

THE THAI ALPHABET. Consonants are written left-to-right, with
vowels arranged around them. The vowels are the characters in the
table with little dotted circles. The dotted circle is not visible – it
indicates the relative position of the consonant and vowel when the
two are combined. The ฿ character is the only one with western
origins – it is the currency symbol for the Thai Baht. This table is
directly included into the Unicode standard from the existing Thai
Industrial Standard TIS 620, simply with the numbers shifted. The
Unicode system tries to do this whenever possible, for some level
of backward compatibility.

38 Chapter 3. Storing Words

The Unicode Standard 7.0, Copyright © 1991-2014 Unicode, Inc. All rights reserved.

28FFBraille Patterns2800

280 281 282 283 284 285 286 287 288 289 28A 28B 28C 28D 28E 28F

⠀

⠁

⠂

⠃

⠄

⠅

⠆

⠇

⠈

⠉

⠊

⠋

⠌

⠍

⠎

⠏

⠐

⠑

⠒

⠓

⠔

⠕

⠖

⠗

⠘

⠙

⠚

⠛

⠜

⠝

⠞

⠟

⠠

⠡

⠢

⠣

⠤

⠥

⠦

⠧

⠨

⠩

⠪

⠫

⠬

⠭

⠮

⠯

⠰

⠱

⠲

⠳

⠴

⠵

⠶

⠷

⠸

⠹

⠺

⠻

⠼

⠽

⠾

⠿

⡀

⡁

⡂

⡃

⡄

⡅

⡆

⡇

⡈

⡉

⡊

⡋

⡌

⡍

⡎

⡏

⡐

⡑

⡒

⡓

⡔

⡕

⡖

⡗

⡘

⡙

⡚

⡛

⡜

⡝

⡞

⡟

⡠

⡡

⡢

⡣

⡤

⡥

⡦

⡧

⡨

⡩

⡪

⡫

⡬

⡭

⡮

⡯

⡰

⡱

⡲

⡳

⡴

⡵

⡶

⡷

⡸

⡹

⡺

⡻

⡼

⡽

⡾

⡿

⢀

⢁

⢂

⢃

⢄

⢅

⢆

⢇

⢈

⢉

⢊

⢋

⢌

⢍

⢎

⢏

⢐

⢑

⢒

⢓

⢔

⢕

⢖

⢗

⢘

⢙

⢚

⢛

⢜

⢝

⢞

⢟

⢠

⢡

⢢

⢣

⢤

⢥

⢦

⢧

⢨

⢩

⢪

⢫

⢬

⢭

⢮

⢯

⢰

⢱

⢲

⢳

⢴

⢵

⢶

⢷

⢸

⢹

⢺

⢻

⢼

⢽

⢾

⢿

⣀

⣁

⣂

⣃

⣄

⣅

⣆

⣇

⣈

⣉

⣊

⣋

⣌

⣍

⣎

⣏

⣐

⣑

⣒

⣓

⣔

⣕

⣖

⣗

⣘

⣙

⣚

⣛

⣜

⣝

⣞

⣟

⣠

⣡

⣢

⣣

⣤

⣥

⣦

⣧

⣨

⣩

⣪

⣫

⣬

⣭

⣮

⣯

⣰

⣱

⣲

⣳

⣴

⣵

⣶

⣷

⣸

⣹

⣺

⣻

⣼

⣽

⣾

⣿

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

280A

280B

280C

280D

280E

280F

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

281A

281B

281C

281D

281E

281F

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

282A

282B

282C

282D

282E

282F

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

283A

283B

283C

283D

283E

283F

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

284A

284B

284C

284D

284E

284F

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

285A

285B

285C

285D

285E

285F

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

286A

286B

286C

286D

286E

286F

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

287A

287B

287C

287D

287E

287F

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

288A

288B

288C

288D

288E

288F

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

289A

289B

289C

289D

289E

289F

28A0

28A1

28A2

28A3

28A4

28A5

28A6

28A7

28A8

28A9

28AA

28AB

28AC

28AD

28AE

28AF

28B0

28B1

28B2

28B3

28B4

28B5

28B6

28B7

28B8

28B9

28BA

28BB

28BC

28BD

28BE

28BF

28C0

28C1

28C2

28C3

28C4

28C5

28C6

28C7

28C8

28C9

28CA

28CB

28CC

28CD

28CE

28CF

28D0

28D1

28D2

28D3

28D4

28D5

28D6

28D7

28D8

28D9

28DA

28DB

28DC

28DD

28DE

28DF

28E0

28E1

28E2

28E3

28E4

28E5

28E6

28E7

28E8

28E9

28EA

28EB

28EC

28ED

28EE

28EF

28F0

28F1

28F2

28F3

28F4

28F5

28F6

28F7

28F8

28F9

28FA

28FB

28FC

28FD

28FE

28FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

BRAILLE PATTERNS. The top section contains all those combinations
using the top six dots only. (There were originally only six dots in
Braille.) All the others then follow, for a total of 256. The patterns are
not assigned particular letters, because these vary for each language:
a pattern might represent the letter A in Western languages and
something entirely different in Japanese or Vietnamese. Empty
circles are used in most Braille typefaces so that, in patterns with
only a few black dots, the empty circles can be felt with the finger to
help distinguish between different characters. This is particularly
useful when dealing with 8-dot patterns.

Chapter 3. Storing Words 39

The Unicode Standard 7.0, Copyright © 1991-2014 Unicode, Inc. All rights reserved.

106BFLinear A10600

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 106A 106B

𐘀

𐘁

𐘂

𐘃

𐘄

𐘅

𐘆

𐘇

𐘈

𐘉

𐘊

𐘋

𐘌

𐘍

𐘎

𐘏

𐘐

𐘑

𐘒

𐘓

𐘔

𐘕

𐘖

𐘗

𐘘

𐘙

𐘚

𐘛

𐘜

𐘝

𐘞

𐘟

𐘠

𐘡

𐘢

𐘣

𐘤

𐘥

𐘦

𐘧

𐘨

𐘩

𐘪

𐘫

𐘬

𐘭

𐘮

𐘯

𐘰

𐘱

𐘲

𐘳

𐘴

𐘵

𐘶

𐘷

𐘸

𐘹

𐘺

𐘻

𐘼

𐘽

𐘾

𐘿

𐙀

𐙁

𐙂

𐙃

𐙄

𐙅

𐙆

𐙇

𐙈

𐙉

𐙊

𐙋

𐙌

𐙍

𐙎

𐙏

𐙐

𐙑

𐙒

𐙓

𐙔

𐙕

𐙖

𐙗

𐙘

𐙙

𐙚

𐙛

𐙜

𐙝

𐙞

𐙟

𐙠

𐙡

𐙢

𐙣

𐙤

𐙥

𐙦

𐙧

𐙨

𐙩

𐙪

𐙫

𐙬

𐙭

𐙮

𐙯

𐙰

𐙱

𐙲

𐙳

𐙴

𐙵

𐙶

𐙷

𐙸

𐙹

𐙺

𐙻

𐙼

𐙽

𐙾

𐙿

𐚀

𐚁

𐚂

𐚃

𐚄

𐚅

𐚆

𐚇

𐚈

𐚉

𐚊

𐚋

𐚌

𐚍

𐚎

𐚏

𐚐

𐚑

𐚒

𐚓

𐚔

𐚕

𐚖

𐚗

𐚘

𐚙

𐚚

𐚛

𐚜

𐚝

𐚞

𐚟

𐚠

𐚡

𐚢

𐚣

𐚤

𐚥

𐚦

𐚧

𐚨

𐚩

𐚪

𐚫

𐚬

𐚭

𐚮

𐚯

𐚰

𐚱

𐚲

𐚳

𐚴

𐚵

𐚶

𐚷

𐚸

𐚹

𐚺

𐚻

𐚼

𐚽

𐚾

𐚿

10600

10601

10602

10603

10604

10605

10606

10607

10608

10609

1060A

1060B

1060C

1060D

1060E

1060F

10610

10611

10612

10613

10614

10615

10616

10617

10618

10619

1061A

1061B

1061C

1061D

1061E

1061F

10620

10621

10622

10623

10624

10625

10626

10627

10628

10629

1062A

1062B

1062C

1062D

1062E

1062F

10630

10631

10632

10633

10634

10635

10636

10637

10638

10639

1063A

1063B

1063C

1063D

1063E

1063F

10640

10641

10642

10643

10644

10645

10646

10647

10648

10649

1064A

1064B

1064C

1064D

1064E

1064F

10650

10651

10652

10653

10654

10655

10656

10657

10658

10659

1065A

1065B

1065C

1065D

1065E

1065F

10660

10661

10662

10663

10664

10665

10666

10667

10668

10669

1066A

1066B

1066C

1066D

1066E

1066F

10670

10671

10672

10673

10674

10675

10676

10677

10678

10679

1067A

1067B

1067C

1067D

1067E

1067F

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

1068A

1068B

1068C

1068D

1068E

1068F

10690

10691

10692

10693

10694

10695

10696

10697

10698

10699

1069A

1069B

1069C

1069D

1069E

1069F

106A0

106A1

106A2

106A3

106A4

106A5

106A6

106A7

106A8

106A9

106AA

106AB

106AC

106AD

106AE

106AF

106B0

106B1

106B2

106B3

106B4

106B5

106B6

106B7

106B8

106B9

106BA

106BB

106BC

106BD

106BE

106BF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

LINEAR A. An undeciphered writing system of ancient Greece,
thought to have been in use 2500–1400 BC. It was added to the Uni-
code specification in 2014. We do not need to understand a writing
system to reproduce it electronically! Most specimens were found
on Crete, though they have been found as far apart as Bulgaria and
Israel.

40 Chapter 3. Storing Words

Problems

Solutions on page 151.

1. Using the method of Polybius, encode the phrase “MARY-
HADALITTLELAMB”. How many characters are in the mes-
sage? How many numbers are needed to encode them? Can
you think of a way to indicate the concept of “end of message”
in Polybius’s system? What about spaces?

2. Complete a table of bits, numbers, and letters for a system
which uses five bits for each character. How many lines does
the table have? Which characters did you deem important
enough to include?

3. Decode the following message from ASCII: 84 114 101 97 115
111 110 105 115 118 101 114 121 109 117 99 104 97 109 97 116
116 101 114 111 102 104 97 98 105 116 44 83 109 105 108 101
121 100 101 99 105 100 101 100 46.

4. Encode the following message into ASCII: The more identities
a man has, the more they express the person they conceal.

5. In a mark-up language in which \ is the escape character, and
a pair of $s around a word means italic and a pair of *s around
a word mean bold, give the marked-up text for the following
literal pieces of text:

a) The love of money is the root of all evil.

b) The love of $$$ is the root of all evil.

c) The love of $$$ is the root of all evil.

d) The love of $$$ is the root of all evil.

Chapter 4

Looking and Finding

When writing a book, it is important to be able to wrangle efficiently
a long piece of text. One important task is to search for a word, find-
ing where it has been used: we may then jump to such a position in
the text, see what is around the word, and modify or replace it. We
need to do this on demand, without an explicitly prepared index.
In fact, we have indexes at the back of books because searching
through the book manually, from front to back, is slow and error
prone for a human. Luckily, it is fast and accurate for a computer.

It might seem that it is easy to describe to a computer how
to search for a word: just look for it! But we must prepare an
explicit method, made of tiny little simple steps, for the computer
to follow. Everything must be explained in perfect detail – no big
assumptions, no hand-waving. Such a careful, explicit method is
called an algorithm.

What are the basic operations from which we can build such an
algorithm? Assume we have the text to be searched, and the word
to search for, at hand. Each of them is made up of characters (A, x,
! etc). Assume also that we know how to compare two characters
to see if they are alike or different. For example, A is the same as
A but different from B. Let us pick a concrete example: we shall
try to find the word “horses” in the text “houses and horses and
hearses”. Let us number each of the 29 characters in the text and
the 6 characters in the word:

41

42 Chapter 4. Looking and Finding

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

We have called the text T and the word W. Notice that we number
upwards from zero, not one. Let us begin by describing a simple
searching method in the large, and then refine it into smaller steps.
We shall be answering the question “Does the word appear in the
text and, if so, where?”, and the answer will be a series of zero, one,
or more numbers giving the matching positions. Let us compare
positions 0 to 5 in W with positions 0 to 5 in T. Plainly, they do not
all match, though some of them do. Position 2 differs (“r” in the
word W but “u” in the text T), and this is enough to declare failure.
Now, we shall shift the whole word W onward one position and try
again:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

Here, we fail on every character in our comparison. And we
keep failing again and again, at each position we try, moving right-
ward one each time:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

Finally, though, we find the match (every character is the same),
and we may declare that the word W was found at position 11 in the
text T:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

Chapter 4. Looking and Finding 43

If we reach a situation where the word overruns the end of the
text, we stop immediately – no further match can now be found:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

Let us try to write our algorithm out as a computer program.
A program is a set of instructions written in a language which is
understandable and unambiguous, both to the computer and to
the human being writing it. First, we shall assume that the part
of the program for comparing the word with the text at a given
position already exists: we will write it later. For now, we shall
concentrate on the part which decides where to start, where to stop,
moves the word along the text position-by-position, and prints
out any positions which match. For reasons of conciseness, we
won’t use a real programming language but a so-called psuedocode –
that is to say, a language which closely resembles any number of
programming languages, but contains only the complexities needed
for describing the solution to our particular problem. First, we can
define a new algorithm called search:

define search pt1

We used the keyword define to say that we are defining a new
algorithm. Keywords are things which are built into the program-
ming language. We write them in bold. Then we gave it the name
search. (This is arbitrary – we could have called it cauliflower
if we had wanted.) We give the name of the thing this algorithm
will work with, called a parameter – in our case pt, which will be a
number keeping track of how far along the searching process we
are (pt for position in text). We shall arrange for the value of pt to
begin at 0 – the first character. Our algorithm doesn’t do anything
yet – if we asked the computer to run it, nothing would happen.

Now, what we should like to do is to make sure that we are not
overrunning the end of the text – if we are, there can be no more
matches. We are not overrunning if the position pt added to the
length of the word W is less than or equal to the length of the text T,
that is to say between these two positions:

44 Chapter 4. Looking and Finding

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

W 012345
horses

That is, when pt is between 0 and 23 inclusive. So, we write
this condition into our program, using the if, then, and length
keywords:

define search pt
if pt + length W <= length T then

...

1

2

3

The <= symbol means “less than or equal to". Note that the
dots ... at line 3 are not part of the program. They just show that
we have not yet filled in what happens if our condition is true. (If
our condition is not true, we do nothing, since we have finished
searching.) We have indented (moved to the right) line 2 by two
spaces as well. We use indentation to indicate structure in our
program. Now to fill in the rest of the search procedure. We want
to perform the comparison of the word with the text at the current
position, and if it matches, we want to print out the position on the
screen.

define search pt
if pt + length W <= length T then

if compare pt 0 then print pt

1

2

3

Here, we are using the yet-to-be-concocted compare algorithm
to compare the text W with the text T at position pt. It has another
parameter too, which it will use as a counter. We start it off at zero.
We don’t need to know how compare works yet: just what it does
with what it is given. This convenient blindness is what allows us to
construct programs piece by piece in a modular fashion, replacing
individual parts without changing the rules which connect them.
Now, whether or not we found a match, it is time to move on to the
next position: we run search again, adding one to the position pt:

Chapter 4. Looking and Finding 45

define search pt
if pt + length W <= length T then

if compare pt 0 then print pt
search (pt + 1)

1

2

3

4

Note that, due to the indentation, both lines 3 and 4 only happen
if the if condition on line 2 is met. Now, see what happens when
we execute our program on our example word “horses” and text
“horses and houses and hearses”:

W = "horses"
T = "houses and horses and hearses"

search 0 search 9 search 17
search 1 search 10 search 18
search 2 search 11 search 19
search 3 11 search 20
search 4 search 12 search 21
search 5 search 13 search 22
search 6 search 14 search 23
search 7 search 15
search 8 search 16

Here we have shown not only the matching position which our
program prints, but a summary of the execution of our program,
to help us to understand what is going on. A match is found – at
position 11, as required – and the program stops after position 23.
At least for this example, our program seems to work. Run through
it on paper yourself to check. Now to fill in the gap: we pretended
that compare already existed. In reality, we would have to write
such an algorithm. We begin by defining it, just like for search:

define compare pt pw1

The compare function will differ from the search one in an
important way: the search function printed things to the screen
– the compare algorithm will instead calculate one of two special
values: either true or false. This will be passed back to the search
function so it can decide what to do. The compare function has two
parameters: the same one as search and one more, pw, which is
the position in the word – we will first compare position pt in the
text T with position pw in the word W, then pt + 1 with pw + 1 etc.
Remember that when we wrote search, we started pw off at zero
when using compare. As soon as we find a mismatch, we stop and

46 Chapter 4. Looking and Finding

return false. If we reach the end of the word without finding such
a mismatch, we stop and return true, because the whole word must
have matched. We dispense with the success condition first – if
pw is equal to length pw, it means we have compared successfully
positions 0 through to pw - 1, and so we can return true:

define compare pt pw
if pw = length W then return true

1

2

Now, we must test the character at position pt in T and the
character at position pw in W to see if they are equal. We access the
individual characters by writing, for example, W[pw] where W is the
text and pw the position:

define compare pt pw
if pw = length W then return true
if T[pt] = W[pw] then compare (pt + 1) (pw + 1)

1

2

3

If the two characters were equal, we continue by running com-
pare with both the text and word positions advanced by one. All
that remains now is to return false if they were not equal:

define compare pt pw
if pw = length W then return true
if T[pt] = W[pw] then compare (pt + 1) (pw + 1)
return false

1

2

3

4

This line will only be reached if the condition at line 3 was false.
Here is the whole program in one place:

define compare pt pw
if pw = length W then return true
if T[pt] = W[pw] then compare (pt + 1) (pw + 1)
return false

define search pt
if pt + length W <= length T then

if compare pt 0 then print pt
search (pt + 1)

1

2

3

4

5

6

7

8

9

Our made-up language is not so dissimilar to some real com-
puter languages. Some of the words are different, but the essential
features are there. Let us have a more detailed look at the execution

Chapter 4. Looking and Finding 47

of our search by giving a running commentary of the parameters
given to search and compare:

W = "horses"
T = "houses and horses and hearses"

search 0 search 9 compare 15 0
compare 0 0 compare 9 0 search 16
compare 1 1 search 10 compare 16 0
search 1 compare 10 0 search 17
compare 1 0 search 11 compare 17 0
search 2 compare 11 0 search 18
compare 2 0 compare 11 1 compare 18 0
search 3 compare 11 2 search 19
compare 3 0 compare 11 3 compare 19 0
search 4 compare 11 4 search 20
compare 4 0 compare 11 5 compare 20 0
search 5 11 search 21
compare 5 0 search 12 compare 21 0
search 6 compare 12 0 search 22
compare 6 0 search 13 compare 22 0
search 7 compare 13 0 compare 22 1
compare 7 0 search 14 search 23
search 8 compare 14 0 compare 23 0
compare 8 0 search 15

We can see that, most of the time, compare fails on the first letter
in the word, and we need proceed no further. When a match is
found, every letter must be checked, of course. At positions 0 and
22 we had to check more than the first letter to see that there was
no match. You can run the whole thing through on paper, if you
have the patience.

How much work did we have to do to find if there was a match?
Let us consider comparing two letters as our basic unit of work –
how many times did we have to do it? Consider Figure A over-
leaf. We have made a total of 32 comparisons. (The number of
comparisons is written at the right on each line.) We have made
sure that our compare function fails as soon as possible, but have
made no other efficiencies. We are lucky that “h” does not appear
in English very often – if our search word began with “e” we would
have to make many more second-letter comparisons. Let us call
the length of the word lW and the length of the text lT , and find
the minimum and maximum number of comparisons in general.
In the best case, the word never matches on the first letter, so we

48 Chapter 4. Looking and Finding

1 2
T 01234567890123456789012345678
houses and horses and hearses

W 012345
horses 3
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 6
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 2

Figure A

Chapter 4. Looking and Finding 49

always have one comparison each time. The total, then, is just
lW − lT + 1 (We take away lT because we stop when the word over-
runs the end of the text.) In our example, that is 29− 6 + 1 = 24
(for example, searching for zebras, since “z” will never match).
In the worst case, we have to go all the way to the last character
to see if a match occurs (for example, searching for “aaaaab” in
“aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”). Then we need six compar-
isons for each position, which in general is lW × (lW + lT + 1), or
in our case 6× (29− 6 + 1) = 6× 24 = 144. Calculations such as
these are vital in Computer Science. We must know how our algo-
rithm performs as the size of the problem increases. This algorithm
performs reasonably well: if the text size doubles, it takes twice as
long, just as we might expect.

The field of searching algorithms is vast and complex, but we
shall consider one of the simpler improvements: skipping forward
more than one place when we know for some reason that a match
cannot now happen. For example, let us consider the first position
again:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses

The “h” matches, and then the “o”, but the “r” in the word does
not match the “u” in the text. Since there is no “u” anywhere in
“horses”, we can skip ahead to position 3 immediately:

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses 3

horses

Let us apply such skipping rules to our whole search, and see
how many comparisons are now required. Look at the diagram
overleaf. We skipped two times. The first time as described al-
ready – there is no “u” in the word “horses”. The second time was
when we found a match: since there is no “h” anywhere else in
“horses” we may skip six places. We have reduced the number of
comparisons from 32 to 23.

50 Chapter 4. Looking and Finding

1 2
T 01234567890123456789012345678

houses and horses and hearses

W 012345
horses 3

horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 1
horses 6

horses 1
horses 1
horses 1
horses 1
horses 1
horses 1

We have produced a very simple searching method, and shown
how it works. In reality, things are more complex. How do we
deal with case (“Horses” vs. “horses”), different parts of speech
(“horsed around with”), accents (“cafe” and “café”), ligatures
(“haemoglobin” and “hæmoglobin”) and so forth?

Of course, even with our existing search program, we can search
for things other than words, such as “!!” to look for excessive
punctuation, or “and and” to search for a common mistake. So
let us stop calling the thing we search for a “word”, and instead
call it a pattern. The simplest examples of patterns are just what
we have been using already: they find only a piece of the text
which matches the pattern exactly. More advanced patterns consist
of special characters to indicate a loosening of the requirements
for one or more characters to match. For example, we can write
realise|realize to search for either realise or realize. (The |
symbol is on your computer keyboard, if you look carefully. In this
context, we pronounce it “or” because it looks for the thing on its
left, or the thing on its right, matching in either case.) In fact, we
can simplify this pattern by using parentheses to limit the optional
section, and write reali(s|z)e. This will still match realize and

Chapter 4. Looking and Finding 51

realise. There are other special characters: we can use a full stop
. to match any character, so that the pattern .unce matches ounce
and dunce.

In addition to these patterns, we can run a search multiple times
and combine the results. For example, when using an internet
search engine, if we are interested in finding documents containing
“cats” or “dogs” we might enter the search “cats OR dogs”. The
search engine knows that the word OR is special, and it runs two
searches, one for “cats” and one for “dogs” and returns documents
which contain an instance of either. In reality, search engines don’t
look through the text of web pages at the moment that you click the
search button: they use pre-prepared indexes to make the search
many many times faster.

In the problems which follow, we extend this idea of patterns,
and ask you to run the searching algorithm through on paper to
determine whether they match the text.

52 Chapter 4. Looking and Finding

Problems

Solutions on page 153.

1. Run the search procedure against the following patterns and
this text:

The source of sorrow is the self itself

What happens each time?

a) cow

b) row

c) self

d) the

2. Consider the following kind of advanced pattern syntax and
give example texts which match the following patterns. A
question mark ? indicates that zero or one of the previous
letter is to be matched; an asterisk * indicates zero or more;
a plus sign + indicates one or more. Parentheses around two
letters separated by a | allow either letter to occur. The letters
?, +, and * may follow such a closing parenthesis, with the
effect of operating on whichever letter is chosen.

a) aa+

b) ab?c

c) ab*c

d) a(b|c)*d

3. Assuming we have a version of search which works for these
advanced patterns, give the results of running it on the same
text as in Problem 1.

a) r+ow

b) (T|t)he

c) (T|t)?he

d) (T|t)*he

Chapter 5

Typing it In

It is easy to take for granted the ability to enter, modify, and correct
large amounts of text accurately and quickly, since most of us have
some proficiency at it these days. But remember that, in the past,
huge numbers of young people would go to secretarial school
before they could work as typists or data entry clerks. The present
generation may use computer or tablet keyboards from childhood,
but those of us who remember having to learn to type as teenagers
recall how hard it seemed at the time.

The development of the keyboard began before the computer,
or course, for typewriters and similar equipment. And so, when
computers were first developed, the best methods for text input
were already known, requiring only slight alteration. In this chap-
ter, we will look at the development of typing devices from the
typewriter to the modern computer. We will also see methods for
typing languages such as Chinese, where the number of characters
might vastly outnumber the keys we could possibly place on a
keyboard.

As early as the eighteenth century, work was beginning on de-
vices for “automatic writing”, but what we recognise today as a
typewriter can be traced back to the first commercially successful
examples, the work of the Pennsylvania-born newspaper editor
Christopher Latham Scholes (1819–1890). His company was even-
tually sold to Remington & Sons, under whose brand typewriters
were sold until the 1960s. The following pages show images from
Scholes’s early and more mature patent applications.

53

54 Chapter 5. Typing it In

THE TYPE WRITING MACHINE OF C. L. SCHOLES, 1868 (FRONT
VIEW). Unrecognisable as a modern typewriter, with piano-style
keys and the paper held horizontally. Only a few units were pro-
duced commercially, before money ran out. Development on a new,
more practical, design continued.

Chapter 5. Typing it In 55

THE TYPE WRITING MACHINE OF C. L. SCHOLES, 1868 (SIDE
VIEW). An early user of a demonstration machine, James Densmore,
bought a 25% interest in the project, despite believing that it needed
significant further development to be practical.

56 Chapter 5. Typing it In

THE TYPE WRITING MACHINE OF C. L. SCHOLES, 1878 (FRONT
VIEW). Rather more recognisable as a typewriter to modern eyes,
with four rows of keys in roughly the same arrangement as com-
puter keyboards today and the paper clipped into a rotating drum,
allowing for secure and reliable placement of each row. There is a
foot pedal for advancing to the next line.

Chapter 5. Typing it In 57

THE TYPE WRITING MACHINE OF C. L. SCHOLES, 1878 (SIDE
VIEW AND KEYBOARD). You can see the key arrangement here.
Note that there are no keys for 0 (zero) or 1 (one) since the keys
for O (capital o) and I (capital i) were deemed similar enough –
the machines were already complex, unreliable, and difficult and
expensive to manufacture; anything which could reduce complexity
was welcome.

58 Chapter 5. Typing it In

This diagram shows the arrangement of “piano” keys on Scholes’
first typewriter:

2 3 5 7 9 N O P Q R S T U V W X Y Z

Q 2 4 6 8 . A B C D E F G H I J K L M

You can see that the alphabetic characters are largely in order.
This caused mechanical problems with the machine. When a key
was pressed, a type-bar with the correct letter would swing up to hit
the paper. It would then fall back down by gravity. However, once
a user became proficient and was hitting keys one after another in
quick succession, the falling type-bar could rub against the next
rising one, jamming, especially if the keys were next to one another
in the row of type-bars. The keyboard was redesigned by analysing
the English language to determine which letters commonly fol-
lowed one another and moving them apart on the keyboard. This
led to the QWERTY arrangement that is almost ubiquitous today.
It also led to the urban myth that the QWERTY keyboard was in-
tended to “slow the typist down because the machine could not
cope”. In fact, the rearrangement facilitated faster typing. Here is
the keyboard layout from one of Scholes’s later patents:

2 3 4 5 6 7 8 9 - , –

Q W E R T Y U I O P :
... A S D F G H J K L M

& Z C X V B N ? ; . ’

The most common (though still rather uncommon) alternative
keyboard layout is the Dvorak layout, patented in 1936 by August
Dvorak (1894–1975), a professor at the University of Washington.
His layout, as specified in his patent, is shown on the opposite page.
The layout has been modified slightly over the years by Dvorak
and ANSI, the American National Standards Institute. The intent
was to design, by scientific methods, a keyboard layout which is
optimal for the human typing, irrespective of the demands of the
machine being typed on. (We don’t have to worry about jamming
type-bars in the computer age.) The layout places the most common
keys in the middle row, under the hands, the least common on the
bottom row where it is most awkward to reach, and the keys are
arranged left and right so that, commonly, key-presses alternate

Chapter 5. Typing it In 59

between the left and right hands in a rhythmic fashion. The layout
has never caught on, however, though one can buy keyboards for
most modern computers with the Dvorak layout, and it retains a
band of admirers.

60 Chapter 5. Typing it In

It is striking how similar the keyboards of these early typewrit-
ers are to those we use every day. Here is a keyboard from the early
days of computing. It belongs to the UNIVAC system built by the
Eckert-Mauchly Computer Corporation in 1953:

By the 1980s computer keyboards were almost identical in lay-
out to today’s, just rather larger and more solid. Here is an IBM
Model M Keyboard from 1985:

The Author’s own keyboard (Apple, 2015), with which this book
was typed, is much the same, but very much thinner and lighter.
Laptop keyboards must be smaller and thinner still.

Chapter 5. Typing it In 61

What of languages other than English? We can divide them
into three categories. First, those which use the so-called Latin
alphabet (that is the familiar ABC. . .), but which contain characters
with accents, or one or two extra characters only. Typically, these
can be typed on a standard keyboard, using either modifier keys
(holding down a key to make the next letter accented) or by using
short sequences of keys (typing “`” followed by the “a” key for “à”).
The second category is those languages, such as Modern Greek,
which do not use the Latin alphabet, but whose alphabet has only
a few tens of characters. These can be dealt with by using the
same keyboard, simply with different letters printed on it. The last
category is for languages such as Chinese. There are many tens of
thousands of characters, and it is impractical to build a keyboard
with that many keys, or to use one. Some system must be devised
to allow all these characters to be typed on a limited number of
keys. This is known as an input system.

One such input system in use in China, Singapore, and Taiwan
is Pinyin. It requires knowing the pronunciation of the word: west-
ernized spellings of the syllables are then used to find the right
character. We shall write the word , which means cherry. In
the Pinyin system, we type the western characters representing the
sounds, and we are then are invited to disambiguate amongst the
possibilities, as the word is formed. The word for cherry sounds
like “ying” followed by “tao”. First, we type “ying”:

The computer displays a list of possibilities for the first character
of our word. It does not yet know which syllable or syllables may
follow. We choose the right one, and the computer replaces “ying”
with the proper character.

62 Chapter 5. Typing it In

Now, we type the second syllable “tao”. We are again invited to
choose a character from a list. We choose the correct one by clicking
or typing a number, and the word is complete:

Another input method for Chinese is Zhuyin. This uses about
40 basic characters, which can be arranged on a normal computer
keyboard like this:

The symbols are on the top-right of each key. These characters
can be used to represent all sounds in the language. Just like Pinyin,
the sounds lead to the characters. However, unlike Pinyin, there is
no need for the user to know any western characters at all.

Let us type using the Zhuyin system. We begin by typing
one of the characters which represent sounds:

Chapter 5. Typing it In 63

We continue to build the first character by typing the next
Zhuyin symbol:

Now, we type in the tone using the number keys on the keyboard
(there are four tones in Chinese, each a different variation on a given
sound):

We can now see the full character, which replaces the Zhuyin
ones we typed in. It is the wrong character, but do not worry – this
will correct itself once the system knows the end of the word. We
begin on the second character:

Now we type the second sound of the second character:

64 Chapter 5. Typing it In

Again, we choose the tone. Contextual information, such as
the previous character, is used to disambiguated the two-character
sequence and, in this case, the most common possibility is correct:

Different systems are popular in each part of Asia, and in each
generation, and depend upon the device in use. Indeed, one person
may use a particular system on their computer and entirely another
on their mobile phone, which has even less space for keys (real or
virtual).

We have seen how English and the world’s many other lan-
guages might be typed into the computer. There have been many
attempts to replace the keyboard for text input, such as voice recog-
nition, which have made some inroads in automotive and niche
applications, but for general purpose computing, the keyboard, real
or virtual, is still king.

Chapter 6

Saving Space

As computers get ever faster, we ask ever more of them: a higher-
resolution film streamed in real time, a faster download, or the same
experience on a mobile device over a slow connection as we have at
home or in the office over a fast one. When we talk of efficiency, we
are concerned with the time taken to do a task, the space required
to store data, and knock-on effects such as how often we have to
charge our device’s battery. And so we cannot simply say “things
are getting faster all the time: we need not worry about efficiency.”

An important tool for reducing the space information takes up
(and so, increasing the speed with which it can be moved around)
is compression. The idea is to process the information in such as way
that it becomes smaller, but also so that it may be decompressed –
that is to say, the process must be reversible.

Imagine we want to send a coffee order. Instead of writing “Four
espressos, two double espressos, a cappuccino, and two lattes”, we
might write “4E2DC2L”. This relies, of course, on the person to
whom we are sending the order knowing how to decompress it. The
instructions for decompressing might be longer than the message
itself, but if we are sending similar messages each day, we need
only share the instructions once. We have reduced the message
from 67 characters to 7, making it almost ten times smaller.

This sort of compression happens routinely, and it is really just
a matter of choosing a better representation for storing a particular
kind of information. It tends to be more successful the more uniform
the data is. Can we come up with a compression method which
works for any data? If not, what about one which works well

65

66 Chapter 6. Saving Space

for a whole class of data, such as text in the English language, or
photographs, or video?

First, we should address the question of whether or not this
kind of universal compression is even possible. Imagine that our
message is just one character long, and our alphabet (our set of
possible characters) is the familiar A,B,C. . .Z. There are then exactly
26 different possible messages, each consisting of a single character.
Assuming each message is equally likely, there is no way to reduce
the length of messages, and so compress them. In fact, this is not
entirely true: we can make a tiny improvement – we could send the
empty message for, say, A, and then one out of twenty-six messages
would be smaller. What about a message of length two? Again, if
all messages are equally likely, we can do no better: if we were to
encode some of the two-letter sequences using just one letter, we
would have to use two-letter sequences to indicate the one-letter
ones – we would have gained nothing. The same argument applies
for sequences of length three or four or five or indeed of any length.

However, all is not lost. Most information has patterns in it, or
elements which are more or less common. For example, most of the
words in this book can be found in an English dictionary. When
there are patterns, we can reserve our shorter codes for the most
common sequences, reducing the overall length of the message.
It is not immediately apparent how to go about this, so we shall
proceed by example. Consider the following text:

Whether it was embarrassment or impatience, the
judge rocked backwards and forwards on his seat.
The man behind him, whom he had been talking
with earlier, leant forward again, either to give him
a few general words of encouragement or some
specific piece of advice. Below them in the hall the
people talked to each other quietly but animatedly.
The two factions had earlier seemed to hold views
strongly opposed to each other but now they began to
intermingle, a few individuals pointed up at K., others
pointed at the judge. The air in the room was fuggy
and extremely oppressive, those who were standing
furthest away could hardly even be seen through it.
It must have been especially troublesome for those
visitors who were in the gallery, as they were forced
to quietly ask the participants in the assembly what
exactly was happening, albeit with timid glances at

Chapter 6. Saving Space 67

the judge. The replies they received were just as quiet,
and given behind the protection of a raised hand.

We shall take as our dictionary the 100 most commonly-used
English words of three or more letters:

00 the 25 there 50 two 75 part
01 and 26 use 51 more 76 over
02 you 27 each 52 write 77 new
03 that 28 which 53 see 78 sound
04 was 29 she 54 number 79 take
05 for 30 how 55 way 80 only
06 are 31 their 56 could 81 little
07 with 32 will 57 people 82 work
08 his 33 other 58 than 83 know
09 they 34 about 59 first 84 place
10 this 35 out 60 water 85 year
11 have 36 many 61 been 86 live
12 from 37 then 62 call 87 back
13 one 38 them 63 who 88 give
14 had 39 these 64 its 89 most
15 word 40 some 65 now 90 very
16 but 41 her 66 find 91 after
17 not 42 would 67 long 92 thing
18 what 43 make 68 down 93 our
19 all 44 like 69 day 94 just
20 were 45 him 70 did 95 name
21 when 46 into 71 get 96 good
22 your 47 time 72 come 97 sentence
23 can 48 has 73 made 98 man
24 said 49 look 74 may 99 think

These words will be compressed by representing them as the
two-character sequences 00, 01, 02, . . . , 97, 98, 99. We don’t bother
with the one and two letter words, common though they are, be-
cause they are already as short or shorter than our codes. We
assume our text does not contain digits, so that any digit sequence
may be interpreted as a code. Any word, text, or punctuation not
in the word list will be rendered literally. If we substitute these
codes into our text, we find a somewhat underwhelming level of

68 Chapter 6. Saving Space

compression:

Whether it 04 embarrassment or impatience, 00 judge
rocked backwards 01 forwards on 08 seat. The 98
behind 45, whom he 14 61 talking 07 earlier, leant
forward again, either to 88 45 a few general 15s of
encouragement or 40 specific piece of advice. Below
38 in 00 hall 00 people talked to 27 33 quietly 16
animatedly. The 50 factions 14 earlier seemed to
views strongly opposed to 27 33 16 65 09 began to
intermingle, a few individuals pointed up to K., 33s
pointed at 00 judge. The air in 00 room 04 fuggy 01
extremely oppressive, those 63 20 standing furthest
away could hardly ever be 53n through it. It must 11
61 especially troublesome 05 those visitors 63 20 in 00
gallery, as 09 20 forced to quietly ask 00 participants in
00 assembly 18 exactly 04 happening, albeit 07 timid
glances at 00 judge. The replies 09 received 20 94 as
quiet, 01 given behind 00 protection of a raised hand.

The original text had 975 characters; the new one has 891. One
more small change can be made – where there is a sequence of codes,
we can squash them together if they have only spaces between them
in the source:

Whether it 04 embarrassment or impatience, 00
judge rocked backwards 01 forwards on 08 seat.
The 98 behind 45, whom he 1461 talking 07 earlier,
leant forward again, either to 8845 a few general
15s of encouragement or 40 specific piece of advice.
Below 38 in 00 hall 00 people talked to 2733 quietly
16 animatedly. The 50 factions 14 earlier seemed
to views strongly opposed to 2733166509 began to
intermingle, a few individuals pointed up to K., 33s
pointed at 00 judge. The air in 00 room 04 fuggy 01
extremely oppressive, those 6320 standing furthest
away could hardly ever be 53n through it. It must 11
61 especially troublesome 05 those visitors 6320 in 00
gallery, as 0920 forced to quietly ask 00 participants in
00 assembly 18 exactly 04 happening, albeit 07 timid
glances at 00 judge. The replies 09 received 2094 as
quiet, 01 given behind 00 protection of a raised hand.

Chapter 6. Saving Space 69

We are down to 880 characters, a reduction of about 10% com-
pared with the original. The top 100 words in English are known
to cover about half of the printed words, in general. We have not
quite achieved that in this example.

Let us try counting the number of each character in our text to
see if we can take advantage of the fact that some letters are more
common than others (our current method makes no use of the fact
that, for example, spaces are very common):

167 space 30 l 10 ,
120 e 24 w 8 .
71 t 19 p 5 k
62 a 19 m 4 j
55 i 19 g 4 T
51 h 19 c 3 q
49 o 18 u 2 x
45 r 15 y 1 W
42 n 13 f 1 K
41 s 13 b 1 I
33 d 10 v 1 B

The space character is by far the most common (we say it has
the highest frequency). The frequencies of the lower case letters are
roughly what we might expect from recalling the value of Scrabble
tiles, the punctuation characters are infrequent, and the capital
letters very infrequent.

We have talked about what a bit is, how 8 bits make a byte, and
how one byte is sufficient to store a character (at least in English).
Our original message is 975 bytes, or 975 × 8 = 7800 bits. We
could encode each of the 33 characters we have found in our text
using a different pattern of 6 bits, since 33 is less than 64, which is
the number of 6-bit combinations 000000,000001,. . . ,111110,111111.
(The number of 5-bit combinations is 32, which is not quite enough.)
This would reduce our space to 975× 6 = 5850 bits. However, we
would have wasted much of the possible set of codes and taken
no advantage of our knowledge of how frequently each character
occurs. What we should like is a code which uses shorter bit pat-
terns for more common characters, and longer bit patterns for less
common ones. Let us write out the beginnings of such a code:

space 0
e 1

70 Chapter 6. Saving Space

t 00
a 01
i 10
h 11
o 000
...

...

There is a problem, though. It is very easy to encode a word;
for example, “heat” encodes as 1110100 (that is, 11 for “h”, 1 for
“e”, 01 for “a”, and 00 for “t”). However, we can decode it in
many different ways. The sequence 1110100 might equally be taken
to mean “eeespaceespace” or “hiispace”. Our code is ambiguous.
What we require is a code with the so-called prefix property – that
is, arranged such that no code in the table is a prefix of another.
For example, we cannot have both 001 and 0010 as codes, since
001 appears at the beginning of 0010. This property allows for
unambiguous decoding. Consider the following alternative code:

space 00
e 010
t 011
a 100
i 101
h 110
o 111
...

...

This code is unambiguous – no code is a prefix of another. The
word “heat” encodes as 110010100011 and may be decoded un-
ambiguously. We can have the computer automatically create an
appropriate code for our text, taking into account the frequencies.
Then, by sending the code table along with the text, we ensure it
may be unambiguously decoded. Here is the full table of unam-
biguous codes for the frequencies derived from our text:

space 111 l 10100 , 000100
e 100 w 00011 . 0101101
t 1011 p 110101 k 11000011
a 0111 m 110100 j 11000001
i 0110 g 110011 T 11000000

Chapter 6. Saving Space 71

h 0100 c 110010 q 01011001
o 0011 u 110001 x 110000100
r 0010 y 010111 W 010110001
n 0000 f 010101 K 010110000
s 11011 b 010100 I 1100001011
d 10101 v 000101 B 1100001010

The information in this table can, alternatively, be viewed as a
diagram:

n

, v

w

r o h

b f

K W

q

.

y

i a

e

l d

t

T j

x

B I

k

u c g m p

s

space

In order to find the code for a letter, we start at the top, adding 0
each time we go left and 1 each time we go right. For example, we
can see that the code for the letter “g” is Right Right Left Left Right
Right or 110011. You can see that all the letters are at the bottom
edge of the diagram, a visual reinforcement of the prefix property.
The compressed message length for our example text is 4171 bits,

72 Chapter 6. Saving Space

or 522 bytes, about half of the original message length. Sending the
tree requires another 197 bits, or 25 bytes. (We do not discuss the
method here.) Of course, the longer the message, the less it matters,
since the message will be so big by comparison. These codes are
called Huffman codes, named after David A. Huffman, who invented
them whilst a PhD student at MIT in the 1950s.

A common use for this sort of encoding is in the sending of
faxes. A fax consists of a high-resolution black and white image.
In this case, we are not compressing characters, but the black and
white image of those characters itself. Take the following fragment:

This image is 37 pixels wide and 15 tall. Here it is with a grid
superimposed to make it easier to count pixels:

We cannot compress the whole thing with Huffman encoding,
since we do not know the frequencies at the outset – a fax is sent
incrementally. One machine scans the document whilst the machine
at the other end of the phone line prints the result as it pulls paper
from its roll. It had to be this way because, when fax machines
were in their infancy, computer memory was very expensive, so
receiving and storing the whole image in one go and only then
printing it out was not practical.

The solution the fax system uses is as follows. Instead of sending
individual pixels, we send, a line at a time, a list of runs. Each run
is a length of white pixels or a length of black pixels. For example,
a line of width 39 might contain 12 pixels of white, then 4 of black,
then 2 of white, then 18 of black, and then 3 of white. We look up
the code for each run and send the codes in order. To avoid the

Chapter 6. Saving Space 73

problem of having to gather frequency data for the whole page,
a pre-prepared master code table is used, upon which everyone
agrees. The table has been built by gathering frequencies from
thousands of text documents in several languages and typefaces,
and then collating the frequencies of the various black and white
runs.

Here is the table of codes for black and white runs of lengths 0
to 63. (We need length 0 because a line is always assumed to begin
white, and a zero-length white run is required if the line actually
begins black.)

Run White Black Run White Black
0 00110101 0000110111 32 00011011 000001101010
1 0000111 010 33 00010010 000001101011
2 0111 11 34 00010011 000011010010
3 1000 10 35 00010100 000011010011
4 1011 011 36 00010101 000011010100
5 1100 0011 37 00010110 000011010101
6 1110 0010 38 00010111 000011010110
7 1111 00011 39 00101000 000011010111
8 1011 000101 40 00101001 000001101100
9 10100 000100 41 00101010 000001101101
10 00111 0000100 42 00101011 000011011010
11 01000 0000101 43 00101100 000011011011
12 001000 0000111 44 00101101 000001010100
13 000011 00000100 45 00000100 000001010101
14 110100 00000111 46 00000101 000001010110
15 110101 000011000 47 00001010 000001010111
16 101010 0000010111 48 0000101 00001100100
17 101011 0000011000 49 01010010 000001100101
18 0100111 0000001000 50 01010011 000001010010
19 0001100 00001100111 51 01010100 000001010011
20 0001000 00001101000 52 01010101 000000100100
21 0010111 00001101100 53 00100100 000000110111
22 00000011 00000110111 54 00100101 000000111000
23 0000100 00000101000 55 01011000 000000100111
24 0101000 00000010111 56 01011001 000000101000
25 0101011 00000011000 57 01011010 000001011000
26 0010011 000011001010 58 01011011 000001011001
27 0100100 000011001011 59 01001010 000000101011

74 Chapter 6. Saving Space

28 0011000 000011001100 60 00110010 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111

Notice that the prefix property applies only to alternating black
and white codes. There is never a black code followed by a black
code or a white code followed by a white code. The shortest codes
are reserved for the most common runs – the black ones of length
two and three. We can write out the codes for the first two lines of
our image by counting the pixels manually:

Run length Colour Bit pattern Pattern length
37 white 00010110 8
1 white 0000111 7
9 black 000100 6
6 white 1110 4
1 black 010 3
7 white 1111 4
3 black 10 2
6 white 1110 4
2 white 0111 4

So we transmit the bit pattern 00010110 0000111 000100 1110
010 1111 10 1110 0111. The number of bits required to transmit
the image has dropped from 37× 2 = 74 to 8 + 7 + 6 + 4 + 3 + 4 +
2 + 4 + 2 + 4 = 46. Due to the preponderance of white space in
written text (blank lines, spaces between words, and page margins),
faxes can often be compressed to less than twenty per cent of their
original size. Modern fax systems which take advantage of the fact
that successive lines are often similar can reduce this to five per
cent.

Of course, we often want more than just black and white. (Even
black and white television was not really just black and white –
there were shades of grey.) How can we compress grey and colour
photographic images? The reversible (lossless) compression we
have used so far tends not to work well, so we look at methods
which do not retain all the information in an image. This is known
as lossy compression. One option is simply to use fewer colours.
Figure A on page 76 shows a picture reduced from the original to
64, then 8, then 2 greys. We see a marked decrease in size, but the

Chapter 6. Saving Space 75

quality reduces rapidly. On the printed page, we can certainly see
that 8 and 2 greys are too few, but 64 seems alright. On a computer
screen, you would see that even 64 is a noticeable decrease in
quality.

If we can’t reduce the number of greys with a satisfactory result,
what about the resolution? Let us try discarding one out of every
two pixels in each row of the original, and one out of every two
pixels in each column. Then we will go further and discard three
from every four, and finally seven from every eight. The result is
Figure B. In these examples, we removed some information and
then scaled up the image again when printing it on the page. Again,
the first reduction is not too bad – at least at the printed size of
this book. The 3/4 is a little obvious, and the 7/8 is dreadful.
Algorithms have been devised which can take the images which
have had data discarded like those above and, when scaling them
back to normal size, attempt to smooth the image. This will reduce
the “blocky” look, but it can lead to indistinctness. Figure C shows
the same images as Figure B, displayed using a modern smoothing
method.

Finally, Figure D shows the images compressed using an algo-
rithm especially intended for photographic use, the JPEG (Joint Pho-
tographic Experts Group) algorithm, first conceived in the 1980s. At
“75% quality”, the image is down to nineteen per cent of its original
size and almost indistinguishable from the original.

76 Chapter 6. Saving Space

original – 100% 64 greys – 40%

8 greys – 14% 2 greys – 5%
Figure A

all pixels 1/2 discarded

3/4 discarded 7/8 discarded
Figure B

Chapter 6. Saving Space 77

all pixels 1/2 discarded

3/4 discarded 7/8 discarded
Figure C

original “75% quality” – 19%

“50% quality” – 11% “25% quality” – 9%
Figure D

78 Chapter 6. Saving Space

Problems

Solutions on page 154.

1. Count the frequencies of the characters in this piece of text
and assign them to the Huffman codes, filling in the following
table. Then encode the text up to “more lightly.”.

’I have a theory which I suspect is rather
immoral,’ Smiley went on, more lightly. ’Each of us
has only a quantum of compassion. That if we
lavish our concern on every stray cat, we never get
to the centre of things.’

Letter Frequency Code Letter Frequency Code
111 110100
100 110011
1011 110010
0111 110001
0110 010111
0100 010101
0011 01010000
0010 01010001
0000 01010010
11011 01010011
10101 01011000
10100 01011001
00011 01011010
110101 01011011

2. Consider the following frequency table and text. Decode it.

Letter Frequency Code Letter Frequency Code
space 20 111 s 2 00011
e 12 100 d 2 110101
t 9 1011 T 1 110100
h 7 0111 n 1 110011
o 7 0110 w 1 110010
m 6 0100 p 1 110001
r 5 0011 b 1 010111

Chapter 6. Saving Space 79

a 4 0010 l 1 010101
f 4 0000 v 1 01010000
c 4 11011 y 1 01010001
u 4 10101 . 1 01010010
i 3 10100

1101000111100001110011100100011100111010001100100
1001100110110001111111001001111010011011011111100
1000111001110100001011010110011110101110001111011
0000001110110110011011101001010101110110111111000
1101110101000000001110000011000111110110111100010
0111011011011101011110001010110100010100001001101
0111100101011111101101111001111011101000100100111
1011011110001010001111011011011110111010100110101
0010

3. Encode the following fax image. There is no need to use zero-
length white runs at the beginning of lines starting with a
black pixel.

4. Decode the following fax image to the same 37x15 grid. There
are no zero-length white runs at the beginning of lines starting
with a black pixel.

0001011000001110001111110001111000001110000001001
0110000100100000010001111111001010001011001001111
1110010000011111111011011110111111011111111011000
0111111100100111111011110111111100100000111000100
1000111011110111000100011100010010001110111101110
0010001111111001001111110111101111111001000001111
1111011011111101111011111111011000011111111011011
1101110100111111110110000111111110110111011110011
1000111110110000111000010010000000100100000010001
110000111000111111001011100010101100010110

Chapter 7

Doing Sums

How do we calculate the answer to 1+ 2× 3? In our heads, perhaps,
or on paper. But how do we decide which operation to do first (the
+ or the ×?) Well, in mathematics, we have the convention that,
in this situation, the multiplication goes first. So we may work as
follows:

1 + 2× 3
=⇒ 1 + 6
=⇒ 7

Something like 1 + 2× 3 is an example of a mathematical expression.
(We have underlined the part of the expression being worked on at
each stage.) Rewriting it stage by stage, making it smaller each time,
until we reach a final answer, is called evaluating the expression.
The result is a value, which is an expression that can be reduced no
further: 7 is just 7. We could rewrite it as 3+ 4 or 1+ 1+ 5, of course,
but we like each subsequent expression to be simpler than the last.
Computer programs often involve these kind of expressions, and
indeed in some programming languages, the whole program is just
one big expression.

It would be simpler if we could represent such expressions in
an unambiguous way, so that we don’t need to think about the
rules for which operations happen in which order. (It’s simple in
our example, but expressions in computer programs can be huge.)
We can just add parentheses to the expression: 1 + (2× 3). Now
the rule for choosing what to do next can be stated more simply:
evaluate a part of the expression which contains no parentheses first.

81

82 Chapter 7. Doing Sums

Note that for this to work, we have to parenthesise even expressions
where the parentheses cannot affect the result, for example 1 + (2 +
(3 + 4)).

It can be difficult for humans to read such over-parenthesised ex-
pressions (which is why mathematicians use the minimum number
of parentheses and rely on a set of ad-hoc rules for disambiguation
– the insistence on explicit preciseness can actually be antithetical to
doing mathematics). For computers, however, this representation
is ideal. We can see the structure of these expressions more clearly
by drawing them like this:

+

×

32

1

is the same as 1 + (2× 3)

These are called trees, because they have a branching structure.
Unlike real trees, we draw them upside-down, with the root at the
top. We can show the steps of evaluation, just as before, without
the need for any parentheses:

+

×

32

1

=⇒ +

61

=⇒ 7

In fact, this is the representation a computer would use inter-
nally (not literal drawings, of course, but a structure of this form
in its memory). When we type in a computer program using the
keyboard, we might write 1 + 2 * 3. (There is no × key on the
keyboard.) It will be converted into tree form and can then be
evaluated automatically, and quickly, by the computer.

When we write instructions for computers, we want a single set
of instructions to work for any given input. To do this, we write our
expressions – just like in maths – to use quantities like x and y and

Chapter 7. Doing Sums 83

so on. These quantities are not fixed, but can be different each time.
We call them variables. For example, here is an expression which
calculates the cube of a given number x:

×

×

xx

x

When we evaluate this in an environment in which x = 4, we
get one result:

×

×

xx

x

=⇒ ×

×

44

4

=⇒ ×

164

=⇒ 64

When we evaluate it, instead, in an environment in which x =
50, we get another:

×

×

xx

x

=⇒ ×

×

5050

50

=⇒ ×

250050

=⇒ 125000

Of course, we can write the same thing out on a single line, and
evaluate it without drawing the tree explicitly:

x× x× x
=⇒ 50× 50× 50
=⇒ 50× 2500
=⇒ 125000

84 Chapter 7. Doing Sums

When evaluating x× x× x, the result of the computation doesn’t
rely on the order in which we evaluate it: we can do (x × x)× x
or x× (x× x). However, computers like to follow rules exactly, so
typically the order is chosen when the expression is read into the
computer, either leftmost-first or rightmost-first.

An expression like this, which depends on the value of a vari-
able, is called a function. In this case, we’ve written a function which
finds the cube of a number. So, let’s name it:

cube x = x× x× x

Now, we can give the value of x explicitly, writing it out like this:

cube 50
=⇒ 50× 50× 50
=⇒ 50× 2500
=⇒ 125000

In the first step, we substituted cube 50 with its definition. We can
view the computation in tree form too:

cube 50 =⇒ ×

×

5050

50

=⇒ ×

250050

=⇒ 125000

Let’s introduce some more interesting operators in our expres-
sions. We will introduce the = or equals operator, and the special
values true and false (not every value has to be a number). Now, we
can write x = 4, and, if x is indeed 4 in the current environment,
we get true; otherwise, we get false. Here, = is the operator, and x
and 4 are the operands. In the expression 1 + 2 the operator is +,
and the operands are 1 and 2.

Now, we can build a more complicated operator which can
make a decision between two sub-expressions based on an equality
test like this. For example, we may write:

if x = 4 then 0 else x + 1

Chapter 7. Doing Sums 85

(This is only somewhat related to the if...then...else con-
struct of Chapter 4 – please put it out of your mind.) As a mathe-
matical construct, this looks rather strange: we are used to seeing
operators like + and ×, which consist of one symbol and have an
operand either side. This new operator has three parts (if, then, and
else) and three operands (x = 4, 0, and x + 1), and they are spread
all over the place! But if we write it out as a tree, it looks much like
the earlier trees:

if. . . then. . . else

+

1x

0=

4x

An operator having more than two operands is not so strange
after all. Suppose we evaluate it in the environment where x = 6:

if. . . then. . . else

+

16

0=

46

=⇒ if. . . then. . . else

+

16

0false

=⇒ +

16

=⇒ 7

Of course, we can write this out in linear form:

if 6 = 4 then 0 else 6 + 1
=⇒ if false then 0 else 6 + 1

=⇒ 6 + 1
=⇒ 7

And, we can name the function:

test l =
if x = 4 then 0 else x + 1

We are getting a little closer to the sorts of calculations a real
program does: making decisions about which part of an expression

86 Chapter 7. Doing Sums

to evaluate based on input data and defining and using reusable
functions.

Now let us write a real, useful function. Given a number, such
as 4, it will calculate the factorial, written 4!, of the number. The
factorial of a number is all the numbers from 1 to that number
multiplied together. For example, the factorial of 4 is 4× 3× 2× 1,
which is 24. The number of possible orderings of a pack of playing
cards is 52!, which is a very large number indeed. To calculate
a factorial, we start at the given number, and we want to keep
multiplying it by the number one smaller and one smaller and one
smaller, until we reach 1. Then, we want to stop, rather than keep
multiplying by 0, −1, −2 etc. You can see that we will have to use
an if . . . then . . . else construct because we have a decision to make.
Let us begin to define our function. The first part is easy – if the
number is 1, the answer is 1:

factorial n =

if n = 1 then 1 else . . .

Now we must consider what to do when the number is greater than
1. In this case, we want to multiply the number by the factorial of
the number one smaller since, for example, 4× 3× 2× 1 = 4× 3!
So we write it out:

factorial n =

if n = 1 then 1 else n× factorial (n− 1)

Notice that our function uses itself within its own definition. This
is not a problem as long as the computation eventually completes
and gives a result. Here it is for the number 4:

factorial 4
=⇒ if 4 = 1 then 1 else 4× factorial (4− 1)
=⇒ if false then 1 else 4× factorial (4− 1)

=⇒ 4× factorial (4− 1)
=⇒ 4× factorial 3
=⇒ 4× (if 3 = 1 then 1 else 3× factorial (3− 1))
=⇒ 4× (if false then 1 else 3 × factorial (3− 1))

=⇒ 4× (3× factorial (3− 1))
=⇒ 4× (3× factorial 2)
=⇒ 4× (3× (if 2 = 1 then 1 else 2× factorial (2− 1)))

Chapter 7. Doing Sums 87

=⇒ 4× (3× (if false then 1 else 2× factorial (2− 1)))

=⇒ 4× (3× (2× factorial (2− 1)))
=⇒ 4× (3× (2× factorial 1))
=⇒ 4× (3× (2× (if 1 = 1 then 1 else 2× factorial (1− 1))))
=⇒ 4× (3× (2× (if true then 1 else 2× factorial (1− 1))))

=⇒ 4× (3× (2× 1))
=⇒ 4× (3× 2)
=⇒ 4× 6
=⇒ 24

We said earlier that we wanted the expression to get smaller
each step. This isn’t the case here: we relax this restriction to say
simply that in a properly working program with a proper input,
the computation eventually finishes. Here is the tree for factorial:

factorial x = if. . . then. . . else

×

factorial

−

1x

x

1=

1x

Consider another simple task with numbers. Given two num-
bers x and y, we wish to calculate xy, which is pronounced “x to
the power y”. This is equal to x multiplied by itself y times. So,
for example, 25 = 2 × 2 × 2 × 2 × 2 = 32. On the other hand,
52 = 5× 5 = 25. Note that it is a mathematical convention that any
number to the power 0 is 1. This fact allows us to begin to write the
power function (notice it has two inputs):

power x y =

if y = 0 then 1 else . . .

88 Chapter 7. Doing Sums

If y is greater than 0, on the other hand, we want to calculate x
times xy−1:

power x y =

if y = 0 then 1 else x × power x (y− 1)

So, we can now calculate 25, showing just the important steps:

power 2 5

=⇒ 2× power 2 4

=⇒ 2× (2× power 2 3)

=⇒ 2× (2× (2× power 2 2))

=⇒ 2× (2× (2× (2× power 2 1)))

=⇒ 2× (2× (2× (2× (2× power 2 0))))

=⇒ 2× (2× (2× (2× (2× 1))))

=⇒ 32

We have looked at numbers like 2 and 32, and the truth values
true and false, but interesting programs often have to operate on
more complicated structures. One such is a list, which we write
with square brackets and commas, like this: [1, 5, 4]. A list is an
ordered collection of other values. That is to say, the lists [1, 5, 4]
and [5, 4, 1] are different, even though they contain the same values.
There is an empty list [] which contains no items. The first element
of a list is called the head, and there is a built-in function to get at it:

head [1, 5, 4]

=⇒ 1

The rest of the elements are collectively referred to as the tail,
and again there is a built-in function to retrieve it:

tail [1, 5, 4]

=⇒ [5, 4]

The empty list [] has neither a head nor a tail. We need just one
more thing for our example programs, and that is the • operator
which sticks two lists together:

[1, 5, 4] • [2, 3]

=⇒ [1, 5, 4, 2, 3]

Chapter 7. Doing Sums 89

Let us write a function to find the length of a list using the tail
function:

length l =
if l = [] then 0 else 1 + length (tail l)

The empty list has length 0, and the length of any other list is 1 plus
the length of its tail. Notice that the = operator works on lists too.
We can try a sample evaluation:

length [2, 3]

=⇒ if [2, 3] = [] then 0 else 1 + length (tail [2, 3])

=⇒ if false then 0 else 1 + length (tail [2, 3])

=⇒ 1 + length (tail [2, 3])

=⇒ 1 + length [3]

=⇒ 1 + if [3] = [] then 0 else 1 + length (tail [3])

=⇒ 1 + if false then 0 else 1 + length (tail [3])

=⇒ 1 + (1 + length (tail [3]))

=⇒ 1 + (1 + length [])

=⇒ 1 + (1 + if [] = [] then 0 else 1 + length (tail l))

=⇒ 1 + (1 + if false then 0 else 1 + length (tail l))

=⇒ 1 + (1 + 0)
=⇒ 1 + 1
=⇒ 2

These diagrams are becoming a little unwieldy, so as we write
more complicated functions, we will leave some of the detail out,
concentrating on the repeated uses of the main function we are
writing, here length:

length [2, 3]

=⇒ 1 + length [3]

=⇒ 1 + (1 + length [])

=⇒ 1 + (1 + 0)

=⇒ 2

90 Chapter 7. Doing Sums

Much better. We can modify our function easily to calculate the
sum of a list of numbers:

sum l =
if l = [] then 0 else head l + sum (tail l)

sum [9, 1, 302]

=⇒ 9 + sum [1, 302]

=⇒ 9 + (1 + sum [302])

=⇒ 9 + (1 + (302 + sum []))

=⇒ 9 + (1 + (302 + 0))

=⇒ 312

Time for something a little more ambitious. How may we re-
verse a list? For example, we want reverse [1, 3, 5, 7] to give [7, 5, 3,
1]. Remember that we only have access to the first element of a list
(the head), and the list which itself forms the tail of a given list – we
do not have a direct way to access the end of the list. This prevents
us from simply repeatedly taking the last element of the list and
building a new one with the • operator (which, you recall, sticks
two lists together). Well, we can at least write out the part for the
empty list, since reversing the empty list just gives the empty list:

reverse l =
if l = [] then [] else . . .

If the list is not empty, it has a head and a tail. We want to make the
head go at the end of the final list, and before that, we want the rest
of the list, itself reversed. So we write:

reverse l =
if l = [] then [] else [head l] • reverse (tail l)

Notice that we wrote [head l] rather than just head l because we
need to turn it into a list so that the • operator can work. Let us

Chapter 7. Doing Sums 91

check that it works (again, in our shortened form of diagram):

reverse [1, 2, 3]

=⇒ reverse [2, 3] • [1]
=⇒ (reverse [3] • [2]) • [1]
=⇒ (([3] • reverse []) • [2]) • [1]
=⇒ (([3] • []) • [2]) • [1]
=⇒ [3, 2, 1]

Let us approach a more complicated problem. How might we
sort a list into numerical order, whatever order it is in to start with?
For example, we want to sort [53, 9, 2, 6, 19] to produce [2, 6, 9,
19, 53]. The problem is a little unapproachable – it seems rather
complex. One way to begin is to see if we can solve the simplest
part of the problem. Well just like for reverse, sorting a list of length
zero is easy – there is nothing to do:

sort l =
if l = [] then [] else . . .

If the list has length greater than zero, it has a head and a tail.
Assume for a moment that the tail is already sorted – then we just
need to insert the head into the tail at the correct position and the
whole list will be sorted. Here is a definition for sort, assuming we
have an insert function (we shall concoct insert in a moment):

sort l =
if l = [] then [] else insert (head l) (sort (tail l))

If the list is empty, we do nothing; otherwise, we insert the head
of the list into its sorted tail. Assuming insert exists, here is the
whole evaluation of our sorting procedure on the list [53, 9, 2, 6, 19],
showing only uses of sort and insert for brevity:

sort [53, 9, 2, 6, 19]

=⇒ insert 53 (sort [9, 2, 6, 19])

=⇒ insert 53 (insert 9 (sort [2, 6, 19]))

=⇒ insert 53 (insert 9 (insert 2 (sort [6, 19])))

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (sort [19]))))

92 Chapter 7. Doing Sums

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (insert 19 (sort [])))))

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (insert 19 []))))

=⇒ insert 53 (insert 9 (insert 2 (insert 6 [19])))

=⇒ insert 53 (insert 9 (insert 2 [6, 19]))

=⇒ insert 53 (insert 9 [2, 6, 19])

=⇒ insert 53 [2, 6, 9, 19]

=⇒ [2, 6, 9, 19, 53]

Now we must define insert. It is a function which takes two
things: the item x to be inserted and the (already-sorted) list l in
which to insert it. If the list is empty, we can simply build the list
[x]:

insert x l =
if l = [] then [x] else . . .

There are two other cases. If x is less than or equal to the head
of the list, we can just put it at the front of the list, and we are done:

insert x l =
if l = [] then [x] else
if x ≤ head l then [x] • l else . . .

Otherwise, we have not yet found an appropriate place for our
number, and we must keep searching. The result should be our
head, followed by the insertion of our number in the tail:

insert x l =
if l = [] then [x] else
if x ≤ head l then [x] • l else
[head l] • insert x (tail l)

Consider the evaluation of insert 3 [1, 1, 2, 3, 5, 9]:

insert 3 [1, 1, 2, 3, 5, 9]

=⇒ [1] • insert 3 [1, 2, 3, 5, 9]

=⇒ [1] • ([1] • insert 3 [2, 3, 5, 9])

=⇒ [1] • ([1] • ([2] • insert 3 [3, 5, 9]))

=⇒ [1] • ([1] • ([2] • ([3] • [3, 5, 9])))

=⇒ [1, 1, 2, 3, 3, 5, 9]

Chapter 7. Doing Sums 93

We compare 3 with 1. Too large. We compare it with the second
1. Too large. We compare it with 2, again too large. We compare it
with 3. It is equal, so we have found a place for it. The rest of the
list need not be dealt with now, and the list is sorted. Here is the
whole program in one place:

insert x l =
if l = [] then [x] else
if x ≤ head l then [x] • l else
[head l] • insert x (tail l)

sort l =
if l = [] then [] else insert (head l) (sort (tail l))

In this chapter, we have covered a lot of ground, going from the
most simple mathematical expressions to a complicated computer
program. Doing the problems should help you to fill in the gaps.

94 Chapter 7. Doing Sums

Problems

Solutions on page 159.

1. Evaluate the following simple expressions, following normal
mathematical rules and adding parentheses where needed.
Show each evaluation in both tree and textual form.

a) 1 + 1 + 1

b) 2× 2× 2

c) 2× 3 + 4

2. In an environment in which x = 4, y = 5, z = 100, evaluate
the following expressions:

a) x× x× y

b) z× y + z

c) z× z

3. Consider the following function, which has two inputs – x
and y:

f x y = x× y× x

Evaluate the following expressions:

a) f 4 5

b) f (f 4 5) 5

c) f (f 4 5) (f 5 4)

4. Recall the truth values true and false, and the if. . . then. . . else
construction. Evaluate the following expressions:

a) f 5 4 = f 4 5

b) if 1 = 2 then 3 else 4

c) if (if 1 = 2 then false else true) then 3 else 4

5. Evaluate the following list expressions:

a) head [2,3,4]

b) tail [2]

c) [head [2,3,4]] • [2,3,4]

Chapter 7. Doing Sums 95

6. Consider this function, which removes elements in positions
2,4,6. . . from a list, leaving elements in positions 1,3,5. . .

odds l =
if l = [] then [] else
if tail l = [] then l else
[head l] • odds (tail (tail x))

Evaluate the following uses of this function:

a) odds []

b) odds [1,2]

c) odds [1,2,3]

You need not show all the stages of evaluation, if you can do
it in your head.

Chapter 8

Grey Areas

With only black ink and white paper, we can draw both beautiful
letters and good line drawings, such as the diagrams of Bézier
curves from Chapter 2. But what about reproducing photographs?
How can we create the intermediate grey tones? Consider the
following two images: a photograph of a camel and a rather higher-
resolution picture of a smooth gradient between black and white:

We shall use these pictures to compare the different methods of
reproduction we discuss. From looking at the page (at least if you
are reading this book in physical form rather than on a computer

97

98 Chapter 8. Grey Areas

screen), you can see that it is indeed possible, at least when one
views the page from a normal reading distance. But how?

The simplest method of converting a grey image into a black
and white one is simply to pick a level of grey above which we
consider each part of the image black and below which we consider
it white. Here is our camel, printed using black ink for any part
which is more than 50% black (i.e. a mid grey), and no ink for any
part which is less than 50% black:

Well, we can see the shape of the camel, but the result is less
than spectacular. Let’s try moving the threshold to 40%:

We can’t see as much detail of the camel in this case, but at least
its legs are solid. If we move the other way, to a threshold of 60%,
things get even worse:

Chapter 8. Grey Areas 99

If we have to manually pick a suitable threshold for each image
in a book to get even an acceptable result, the process is going to be
time consuming. Here is our black to white gradient at 40%, 50%,
and 60% thresholds:

These images bear almost no resemblance to the original. Before
describing some more advanced methods for grey tone reproduc-
tion, like the one used to make the images at the head of this chapter,
we shall take a brief historical detour – the problem of reproducing
grey tones is not intrinsically one of computer printing, but has
been important in newspaper and print production for hundreds
of years.

The process of printing is essentially one of duplication. In for-
mer times, if we wanted just one of something, we could have a
painter paint it, or a scribe write it down. We might even be able to

100 Chapter 8. Grey Areas

produce a few thousand bibles by having monks copy them repeat-
edly for years at a time. However, we could not produce a million
copies of a newspaper, with text and pictures, overnight, no matter
how extensive our resources. To produce text, we require only black
ink on white paper. To reproduce paintings and photographs, we
need methods which provide the illusion of grey tones. Printing the
paper dozens of times with diluted inks to form multiple shades of
grey, as the watercolourist would, is time consuming and physically
difficult – think of the amount of water which would end up on the
paper, for one. So we must find other ways. The following picture
shows a very simple scheme for creating an illusion of grey on a
display such as a computer screen:

We have a checkerboard pattern of black and white, and if we
get the scale small enough, or the viewer stands far enough away,
or both, the appearance is of a mid grey. Put this book on a stand
and walk slowly away – how far do you have to go for each of the
parts of this picture to appear grey? Similar techniques can work
when printing on paper, but we have to account for the spreading
of ink and all the other imperfections of the physical world.

Some of the earliest reproduction methods involved cutting
patterns into wooden blocks, applying ink, and stamping them onto
cloth or paper, either by hand or in a primitive press. The process

Chapter 8. Grey Areas 101

Figure A: Woodblock print. Der Formschnieder (The Blockcutter),
1568.

is similar to a child cutting a potato to make a stamp – the wood
is removed in areas where the artist does not want ink, and then
ink is applied to the raised portions. Figure A shows a woodblock
print Der Formschnieder (The Blockcutter) from the Panoplia omnium
illiberalium mechanicarum (Book of Trades), published in Germany
in 1568. The detail achievable depends upon the closeness of the
grain of the wood, the properties of the ink and paper, and the
permeability of the wood to ink. Attempts to produce areas which
appear grey by using hatching or other patterns are likely to be
either too coarse to be convincing, or they result in a solid inked
area due to ink spreading across the surface of the block or along
the fibres of the paper.

The term intaglio (in-tah-lee-o), from the Italian intagliare – to
engrave – refers to a group of techniques in which a metal plate
has material removed manually, is rubbed with viscous ink all over,
has the excess removed carefully with a cloth, and is then pressed
onto a dampened piece of paper. The ink remains only in the lines
engraved in the plate, and is transferred to the paper by the pressure
of the press. Thus, the removal of material is normally done in the
opposite sense to that in the woodblock process: we engrave where
we want ink to be present, not where we want it to be absent.

102 Chapter 8. Grey Areas

Figure B: Engraving. Detail of Der Kreuzbrunnen zu Marienbad, 1819.

The term engraving, in the context of printing, refers to the use
of the tools traditionally used for engraving decoration on, for exam-
ple, decorative silver-work, on metal plates instead, which are then
used for printing. Decorative metal engravers had used more prim-
itive versions of this technique to “print” their work-in-progress
when designing niello, a type of decoration where engraved lines
were filled with a black substance and polished for contrast. Mak-
ing proof prints with ink helped to show what the final design
might look like when blacked.

In the late fifteenth century, engraving began to be used for the
reproduction of simplified versions of paintings and for original
works. A copper plate would be inscribed with a hard metal tool
known as a burin. The plate could then be used to produce hun-
dreds of copies of a print. (Copper being soft, and the printing being
done under pressure, it would eventually produce faded prints.)
Engraving was a highly skilled and difficult process. Figure B is a
relatively simple and coarse engraving, a detail of Der Kreuzbrunnen
zu Marienbad published by Franz Satori in 1819. Figure C is a much
more accomplished and fine engraving, Melancolia I, by the German
master Albrecht Dürer.

Alternative intaglio methods were developed, hoping to im-
prove the fineness of the result, or lessen the amount of expertise
required. The mezzotint method, from the Italian “mezzo tinto”

Chapter 8. Grey Areas 103

Figure C: Fine engraving. Melacolia I, Albrecht Dürer, 1514.

104 Chapter 8. Grey Areas

Figure D: Wiping excess ink from a mezzotint plate.

meaning “half-painted”, involves using a device called a rocker
to roughen the plate all over. Ink gathers in the little indentations
made by such a process, leading to an entirely black image. Bur-
nishing tools are then used to flatten the copper in areas where ink
is not wanted. Because this process is gradual (one may burnish
more or less), the illusion of shades is easier to achieve. Figure D
shows a mezzotint plate being wiped off ready for printing. Un-
fortunately, due to the softness of copper and the smallness of the
indentations, these plates did not last long, and the quality of the
printing declined with each pressing. Figure E shows a mezzotint
print. Note the fineness of the grey tone reproduction.

Another alternative to engraving is the process of etching, in
which the whole plate is covered in an acid-resistant substance,
which is then scratched off using tools in areas where the artist
wants ink to appear in the final print. The plate is then washed with
acid, which roughens the metal in unprotected areas so that they
will hold ink. The plate is then printed as with any other intaglio
process. The great advantage is that the process is available to the
general artist, who can draw in this medium without learning the
difficult metalwork skills of the engraver. Improvements to the
process include “stopping out”, where the plate is briefly dipped
in the acid, more acid-resistant substance is added to certain areas,
and then the plate is dipped again. This allows better control over
grey tones. Figure F is an etching by Rembrandt, known as The
Hundred Guilder Print after the sum reportedly once paid for a copy.

Chapter 8. Grey Areas 105

Figure E: A mezzotint print depicting Bertel Thorvaldsen (1770-
1844), produced by Gustav Luederitz from an original by Franz
Kruger.

106 Chapter 8. Grey Areas

Figure F: Etching. Christ Headling the Sick, or The Hundred Guilder
Print, c. 1647–1649, Rembrandt van Rijn.

It might surprise you that even the photographic process has
trouble representing grey tones. Photographic film consists of parti-
cles of compounds of silver, suspended in a gel. When exposed to
light, tiny changes to the crystal structure record an invisible image.
When developed, each particle is either converted to silver (which
will appear black in the final photograph), or not thus converted
(which will appear white). The process of enlarging the photograph
from the negative to the positive paper print may introduce greys
by dint of its analogue nature, of course, but if enlarged enough,
one can see the so-called film grain clearly. Figure G shows an en-
largement of a photograph of a plain grey card. Under a powerful
electron microscope, in Figure H, we can see the individual crystals
on the photographic film. None of the methods we have seen so
far allow for the automatic conversion of photographic content to a
printable form such as a plate which might be wanted for a daily
newspaper. We have a grey tone image, in the form of a photo-
graphic negative. Our printing process, however, allows only black
and white, so we wish to automatically convert the grey tones to a
series of regularly spaced dots whose diameter reflects the level of
grey. Here is our gradient, followed by its so-called halftone:

Chapter 8. Grey Areas 107

Figure G: Film grain

Figure H: Film under an electron microscope.

108 Chapter 8. Grey Areas

You can see that the spacing of the dots is quite wide, and that
they can be quite large: this is counterintuitive but deliberate. By
making sure that the dots are properly separate, we make the image
easily reproducible, even on cheap, porous newsprint. Perhaps 50
to 80 lines of dots per inch is sufficient. For higher-quality coated
paper used in book production, we might be able to go as far as 150
lines per inch or lpi.

Early methods of halftone production involved placing a device
known as a halftone screen in front of photographic paper and
projecting the original image through it with the use of a camera
lens. The first halftone screens were made in about 1850 from a
fine cloth gauze by the British scientist William Henry Fox Talbot
(1800–1877). Later, they were commercially manufactured from
glass engraved with a grid of lines. The effect of these is, through
optical effects, to project a halftone image – a series of distinct dots
of varying size – onto the photographic paper. This can then be used
as the starting point for producing plates for printing. The image
has successfully been reduced to only black and white through
purely physical means. Figure I is one of the earliest halftoned
pictures in mass production: it shows Steinway Hall on East 14th
Street in Manhattan, printed in the Daily Graphic on December 2nd
1873. This was the first method of printing a photograph direct
from the negative with no manual intervention.

Returning to Computer Science, we can simulate the halftone
screen in software, to produce the appropriate dot pattern for print-
ing. Consider the three versions of our camel picture in Figure J. The
first one, with the smallest dots, seems to have the highest effective
sharpness and visual resolution. However, as the maximum dot
size increases, so does the number of possible shades. The middle
image, when viewed at a distance, is in fact a closer representation
of the original image. The last one has yet more sizes of dots (and
so, effective grey levels) but the resolution is now too coarse. We
turn to our gradient for another look, printed in the same halftones
as the camel pictures:

Chapter 8. Grey Areas 109

Figure I: Halftone of the Steinway Hall, printed in the Daily Graphic,
December 2nd 1873.

110 Chapter 8. Grey Areas

Figure J: Small, medium, and large halftone dots.

Chapter 8. Grey Areas 111

At the top, the finest halftone; at the bottom, the coarsest. We
can see that the larger number of apparent greys in the coarser dots
are an advantage in this case: the top line looks very fragmented
indeed. At a distance, the middle and bottom are both good.

We can perform this halftoning by producing patterns which
look like increasing sizes of ink dots. These patterns can then be
displayed on screen or printed. To do this, we divide the image up
into little 2x2 or 4x4 squares of pixels, and then choose one of a set
of patterns to represent the average level of grey in the square. The
result is a picture with the same number of pixels, but where each
is black or white. Here are the patterns for a 2x2 scheme:

Notice that there are five patterns, not four as we might expect.
We use the first pattern for a grey level between 0% and 20%, the
second between 20% and 40%, and so forth. In this scheme we have
tried to keep the black dots adjacent to one another to build up little
spots, which is better suited to the spreading behaviour of ink on
paper. The process is known as dithering. The patterns above may
be generated by listing the order in which they turn black in a table:

1 2
3 4

So, for the third pattern, we blacken all pixels with values less
than three (that is, one and two). It is known as an ordered dither for
this reason. Here is the result:

112 Chapter 8. Grey Areas

We only have five different shades of grey, and the image suffers
for it: we can see areas which in the original image were subtly
shaded as plain, flat sections – not a good result. Let’s double the
length of the side of our square to 4. Now, we will have 4× 4 + 1 =
17 different levels of grey, but the image will have fewer dots overall.
Will the increase in the number of shades outweigh the decrease in
apparent resolution? Here is the generating table:

15 10 8 14
5 1 2 12

11 3 4 6
13 7 9 16

Here are the resultant 17 dither patterns. Again, they form a
cohesive spot, and are built up somewhat symmetrically:

Chapter 8. Grey Areas 113

As the tone moves from white to black, the spot grows gradually.
If you imagine the patterns tiled repeatedly across the page, you can
see that the white sections left in the corners as the black spot grows
themselves form white spots. Thus, we have a smooth transition.
Here is the result of dithering with these patterns for the camel and
the gradient:

Prop this book up against a wall, retreat to the other side of the
room (or perhaps half-way), and see which looks more camel-like.
What about at normal reading distance? Such halftone patterns are
used in most modern printing. Here are microscope pictures of the
camel as it is printed at the head of this chapter, at 20x and 400x
magnification:

114 Chapter 8. Grey Areas

For colour images, several halftone screens are used, one for
each of the primary printing colours used in the particular printing
technology – often cyan, magenta, yellow, and black. The halftones
are at different angles, so that the colours do not interfere with one
another and the ink is more evenly distributed. Here is part of a
glossy colour leaflet at 20x and 400x:

When we are producing a result for a type of device which has
reasonably sharp or predictable dots (such as a computer moni-
tor) and none of the vagaries of ink-flow, we can choose a more
appropriate ordered dither, free of the need to build a spot as such,
leading to the appearance of a higher resolution. Black and white
computer displays are rather rare these days, but were common in
the past. Consider the following table and pattern for the 2x2 case:

2 3
4 1

Chapter 8. Grey Areas 115

We still have five levels of grey, but the apparent resolution
should be higher, and the eye should find it harder to discern
individual dots, since we try to keep them as small as possible for
as long as possible. Here is the camel and gradient, drawn with this
new set of patterns:

Here is a similarly-constructed 4x4 pattern giving, as before, 17
greys. Notice that it is built in such a way as to keep the spots as
small as possible.

2 16 3 13
10 6 11 7
4 15 1 14

12 8 9 5

116 Chapter 8. Grey Areas

This time, the results are rather better, due to the increased
number of dot patterns, which allow a wider range of apparent
shades of grey to be reproduced. Here is our camel and gradient
built with the 4x4 patterns generated from our table:

The spots are, in general, much smaller than in the first set of
patterns we looked at, and the gradient is reasonably convincing,
although it does appear to be divided into little blocks. Figure
K shows our camel picture using these sorts of small-dot dither
patterns of sizes 2x2, 4x4, and 8x8. The difference is even more
obvious when we use the gradient:

Chapter 8. Grey Areas 117

Figure K: Small-spot ordered dithers with 2x2, 4x4, and 8x8 pat-
terns.

118 Chapter 8. Grey Areas

Our small-dot ordered dither patterns, suitable for on-screen
use where pixels are clearly defined (unlike ink on paper), are not
too bad. They do the job of creating the impression of grey shades
where only black and white exist. However, the regular patterns of
dots can be distracting: we see those patterns instead of the image,
since our eyes are drawn to regular features. The technique of error
diffusion leads to a better result than ordered dithering, with fewer
distracting patterns. This method was invented in 1976 by Robert
W. Floyd and his student Louis Steinberg at Stanford University.
Say that we have an image made up of greys numbered between
0% ink (white) and 100% ink (black) like the one in this diagram –
unavoidably, we shall have to use a somewhat small example:

50 20 70
40 30 70
50 40 90

We proceed pixel by pixel, starting at the top left, dealing with
a row of pixels in order and then moving on to the next row, until
we have looked at the whole image. For each pixel, we first decide
whether to paint it black or white in the final image. If it is 50
percent or more black, we make that pixel black; if it is less than 50
percent, we make it white. We write this value to the final image.
Now we consider the error inherent in that choice – that is to say,
how much too white or too black were we forced to make the
pixel due to only having fully white and fully black available. For
example, on the first pixel, we would choose to place a 100% black
pixel, and the original value was 50%, so we were forced to make it
50% too black. We redistribute this error to some of the surrounding

Chapter 8. Grey Areas 119

pixels of the original image according to the following proportions
(where ×marks the current pixel):

× 7/16
3/16 5/16 1/16

So, for our first pixel, the error of -50% is distributed among the
surrounding ones in the following amounts:

× -22%
-9% -16% -3%

We apply this arithmetic to the original image to obtain the
following values:

100 -2 70
31 14 67
50 40 90

Now we can move on to the next pixel. And so on, all across the
first row, and onto the next, until the image is wholly dealt with.
The end result should be that the final image only has the values 0
and 100, so it has been successfully reduced to just black and white.
The overall average grey level of the image should be the same,
because the errors have been only moved around, not forgotten
about (except at the edge of the image, where the errors “fall off”).
Here is the end result for our image:

100 0 100
0 0 100
100 0 100

A useful feature of this scheme is that a flat mid grey at fifty per-
cent will produce a stable, miniature checkerboard pattern, which is
not distracting since it is so small. Consider the following original:

50 50 50
50 50 50
50 50 50

The final image, after each pixel has been processed, will have
the following pattern of black and white pixels:

120 Chapter 8. Grey Areas

100 0 100
0 100 0
100 0 100

Here is our camel picture and gradient processed with the algo-
rithm described above.

You can see that there appear to be much finer gradations of
grey and that, whilst the eye can discern some patterns in the flat
shaded areas, they are much less distracting than in the case of
the ordered dither. Overall, a much more pleasing result. The
gradient is much finer too, especially when viewed from a distance.
There are several newer variations on this procedure, using more
complicated diffusion of errors.

Chapter 8. Grey Areas 121

Problems

Solutions on page 163.

Show the 17 dither patterns generated from each of these grids of
numbers.

1. 1 9 3 11
13 5 15 7
4 12 2 10
16 8 14 6

2. 1 9 13 3
16 5 7 11
12 8 6 15
4 14 10 2

3. 2 6 11 15
4 8 9 13
14 10 7 3
16 12 5 1

Chapter 9

Our Typeface

This book is typeset in Palatino, designed in 1950 by the legendary
German typographer Hermann Zapf (1918–2015). The definitive
modern version of Palatino from Linotype of Germany contains
some 1328 glyphs (shapes for characters) for each typeface in the
family (Roman [normal], Italic, Bold, and Bold Italic), a total of
5312 shapes for the typeface designer to draw. You can see why
commissioning a new typeface is expensive, and so why buying
high quality typefaces for your own use can be expensive too. Due
to all the extra characters available, Palatino Linotype supports the
following Western languages by providing appropriate accents and
alternative glyphs in a single typeface:

Afrikaans Estonian Latvian Serbian
Albanian Faroese Lithuanian Slovak
Basque Finnish Macedonian Slovenian
Belarusian French Malay Somali
Bulgarian Galician Maltese Spanish
Catalan German Manx Swahili
Cornish Hungarian Norwegian Bokmål Swedish
Croatian Icelandic Norwegian Nynorsk Swiss German
Czech Indonesian Oromo Uzbek
Danish Irish Polish Vietnamese
Dutch Italian Portuguese Welsh
English Kalaallisut Romanian Zulu
Esperanto Kazakh Russian

123

124 Chapter 9. Our Typeface

In addition, it contains the Cyrillic characters used in Modern
Greek as well as the so-called Latin ones we use in English. Here
are the capital letters and lower-case letters used in English.

A B C D E F G H I J K
L M N O P Q R S T U

VW X Y Z
a b c d e f g h i j k
l m n o p q r s t u

v w x y z

0123456789
ŪūŬŭŮůŰűŲų

ĲĔĕæœ
fi fl ff ffifflĤĥ Ħ
Ĳ st Ĵ ĵĖėĘ

A B C D E F G H I J K
L M N O P Q R S T U

VW X Y Z
a b c d e f g h i j k
l m n o p q r s t u

v w x y z

0123456789
ŪūŬŭŮůŰűŲų

ĲĔĕæœ
fi fl ff ffifflĤĥ Ħ
Ĳ st Ĵ ĵĖėĘ

Then, two styles of numbers: the so-called lining numbers, which
have the same height as capital letters, and all sit on the baseline,
and the old style numbers, some of which have descenders, and are
not all the height of capital letters.

A B C D E F G H I J K
L M N O P Q R S T U

VW X Y Z
a b c d e f g h i j k
l m n o p q r s t u

v w x y z

0123456789
ŪūŬŭŮůŰűŲų

ĲĔĕæœ
fi fl ff ffifflĤĥ Ħ
Ĳ st Ĵ ĵĖėĘ

Below are some of the ligatures available in Palatino. These are
special glyphs used when letters would otherwise join unpleasantly,
or in other situations where two letters should be represented by
a single glyph. Some are for decoration (such as “Q” followed by
“u”, which is normally just Qu). Others look like ligatures, but are
really a different sound or letter, a diphthong, such as œ.

Chapter 9. Our Typeface 125

A B C D E F G H I J K
L M N O P Q R S T U

VW X Y Z
a b c d e f g h i j k
l m n o p q r s t u

v w x y z

0123456789
ŪūŬŭŮůŰűŲų

ĲĔĕæœ
fi fl ff ffifflĤĥ Ħ
Ĳ st Ĵ ĵĖėĘ

Next are the Small Caps, which are capital letters set to the same
height as lowercase letters. You can see examples of Small Caps
in the front matter of this book (the parts before the first chapter).
Notice that the small caps are not just scaled-down versions of the
ordinary capitals – having the same general weight, they may be
used alongside them.

Sњюљљ CюѝѠ
Sњюљљ ₁₂₃₄₅₆₇₈₉₀ NѢњяђџѠ

Ä À Å Á Ã Ą Â Ç
ä à å á ã ą â ç

@ £ $ % ¶ † ‡ © ¥ €

` ' `` ''
! ? () { } : ; , . /

Next, we have accented letters, of which only a tiny portion
are shown here. Accents attach in different places on each letter,
so many typefaces contain an accented version of each common
letter-accent pair, together with separate accent marks which can
be combined with other letters as required for more esoteric uses.

Sњюљљ CюѝѠ
Sњюљљ ₁₂₃₄₅₆₇₈₉₀ NѢњяђџѠ

Ä À Å Á Ã Ą Â Ç
ä à å á ã ą â ç

@ £ $ % ¶ † ‡ © ¥ €

` ' `` ''
! ? () { } : ; , . /

Finally, here are some of the many other glyphs in Palatino, for
currency symbols and so forth, and some of the punctuation:

Sњюљљ CюѝѠ
Sњюљљ ₁₂₃₄₅₆₇₈₉₀ NѢњяђџѠ

Ä À Å Á Ã Ą Â Ç
ä à å á ã ą â ç

@ £ $ % ¶ † ‡ © ¥ €

` ' `` ''
! ? () { } : ; , . /

126 Chapter 9. Our Typeface

Sњюљљ CюѝѠ
Sњюљљ ₁₂₃₄₅₆₇₈₉₀ NѢњяђџѠ

Ä À Å Á Ã Ą Â Ç
ä à å á ã ą â ç

@ £ $ % ¶ † ‡ © ¥ €

` ' `` ''
! ? () { } : ; , . /

How do we pick letters from the typeface and place them on
the page? Each glyph contains not only the lines and curves we
have discussed earlier in the books, but what are known as metrics;
that is to say a set of numbers governing how the letter relates to
its previous ones horizontally, and where it lies vertically. Various
of these numbers can be used to fit letters together pleasingly. The
most important metrics are the baseline and the advancement. The
baseline is just like the line on a schoolchild’s ruled paper – capital
letters sit on it, letters with descenders like “g” and “y” drop some-
what below it. Every glyph is defined in relation to this baseline, so
we can place it in the correct vertical position. The advancement
tells us how much to move to the right after drawing the glyph;
that is to say, how far the origin has moved. So, at the beginning of
a line, we start at an x-coordinate of zero and move rightwards by
the advancement each time.

Baseline

Advancement

Bounding Box

Ascent

Descent

The diagram shows three glyphs, showing various metrics:
some are needed for placing them on the page and some infor-
mation used for other purposes. The position of the letters in a line
depends not only on the individual characters (the letter “i” is much
narrower than the letter “w”, for example), but on the combinations
in which they are printed. For example, a capital V followed by a
capital A looks odd if the spacing is not tightened:

Chapter 9. Our Typeface 127

AV AV
In this example, there is no tightening in the left-hand example,

but tightening has been applied to the right-hand one. Such tight-
ening is called kerning. Here are some of the rules from Palatino
showing how much extra space is added or removed when the
characters “A”, “a”, “:” etc. follow the character “V”.

V A -111 V hyphen -74 V r -92
V a -92 V i -55 V semicolon -55
V colon -55 V o -111 V u -92
V comma -129 V period -129 V y -92
V e -111 V A -111 V Oslash -37
V OE -37 V ae -148 V oslash -130
V oe -130 V Aring -130 V quoteright 28

The numbers are expressed in thousandths of an inch. For
example, you can see that when a hyphen follows a “V”, the hyphen
is placed 74/1000 of an inch closer to the “V”. Kerning is especially
important when letters meet punctuation. Palatino had, in all,
1031 such rules for pairs of characters. Overlapping of adjacent
letters can also be achieved simply by extending the shape of the
character beyond its bounding box. The following diagram shows
the particularly striking overlaps used by the various alternative
characters available in another of Zapf’s creations, the script-like
Zapfino.

dawning dawning dawning dawning
dawning dawning dawning dawning

128 Chapter 9. Our Typeface

The diagram shows various alternative characters for “d” and
“g” in the Zapfino typeface. You can see that some suit the word
more than others. In particular, in the bottom-right example, the
initial “d” clashes awfully with the next letter.

Before computers, when type was set manually using little metal
pieces arranged into rows, smeared in ink, and pressed onto paper,
it was natural for a typeface to have slightly different glyph designs
for each size. A headline would have a subtly different character
design to normal sized text, and again different to the sort of tiny
text used for footnotes. Part of this is due to the essential optical
characteristics of small shapes: it is easier to read a small typeface
if it has proportionally wider characters than its normal size, for
example. Part of it has to do with the physical characteristics of
the ink and paper: ink spreads, and the way it spreads leads to the
same metal shape showing differently at different sizes.

When designing a typeface by computer, however, it is tempting
to take a shortcut: design the typeface once, and then automatically
scale it to whatever size is needed by simple arithmetic on its coordi-
nates. Now, we have any size available, and designing the typeface
is cheaper. This shortcut was not available to the metal type man-
ufacturer. However, many good modern computer typefaces still
have multiple so-called optical sizes. They may have separate shapes
for 5pt, 8pt, 10pt, 12pt, and 16pt, for example. We can use the com-
puter scaling method in between sizes – to obtain 11pt, for example.
Figure A on the opposite page shows a phrase printed in the Latin
Modern typeface, at five different sizes. Below, the same phrase has
been repeated, but scaled up to show the differences clearly. We
have not yet looked at the other three faces of the Palatino typeface:
the Bold, the Italic, and the Bold Italic. A bold typeface is one
which is thicker, using more ink. The Italic has a different, sloping
shape. Both are used for emphasis. You can see Bold and Italic used
in various places in this book, but we don’t use Bold Italic. The
various shapes are designed to work comfortably together.

Shape
Shape

Shape
Shape

Chapter 9. Our Typeface 129

Figure A

You can see that the Italic has an entirely different shape from
the Roman. This is usual for serif typefaces such as Palatino. (Serifs
are the little pieces attached to the end of each stroke of the letter.)
However, for a sans serif typeface (one without serifs), it is sufficient
to simply slant the shapes by fifteen degrees or so. This can be done
automatically by the computer, so the typeface designer need only
design the Roman shapes. Unfortunately, automatically producing
a Bold face from a Roman one is rather more difficult, so it is usually
done manually, albeit with help from computer tools. This diagram
shows an automatically-generated oblique face and a separately-
designed italic face:

Oblique Italic
Oblique Italic

130 Chapter 9. Our Typeface

We have looked at some of the surprising complexities of a
simple typeface, and how its characters are picked and placed next
to each other to form lines. Typefaces for Eastern alphabets and
writing systems are even more complex. To finish, we exhibit the
full 1328 glyphs of the Palatino Roman typeface on the next three
pages. Can you work out what each glyph is used for?

Chapter 9. Our Typeface 131

Palatino(Linotype
Palatino Linotype : 1,328 glyphs

Glyphs 0 to 449

� � .A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z Á À Â Ä Ã Ă Å
Ǻ Ā Ą Æ Ǽ Ć Ĉ Č Ç Ċ Ď Đ Ð É È Ê Ë Ě
Ĕ Ė Ē Ę Ǵ Ĝ Ğ Ģ Ġ Ĥ Ħ Í Ì Î Ï Ĩ Ĭ İ
Ī Į Ĵ Ķ v Ĺ Ļ Ľ z Ŀ Ł Ń Ñ Ň Ņ Å Ó Ò
Ô Ö Õ Ŏ Ő Ō Ø Ǿ Œ Ŕ Ř Ŗ ê Ś Ŝ Š Ș Ş
Ț Ť ò Ţ Ŧ Ú Ù Û Ü Ũ Ŭ Ů Ű Ū Ų ẂẀŴ
Ẅ Ý Ỳ Ŷ Ÿ Ź Ž Ż Ʒ Ŋ ≤ Þ a b c d e f
g h i j k l m n o p q r s t u v w x
y z á à â ä ã ă å ǻ ā ą æ ǽ ć ĉ č ç
ċ ď đ é è ê ë ě ĕ ė ē ę ǵ ĝ ğ ģ ġ ĥ
ħ í ì î ï ĩ ĭ ı ī į ĵ ķ Û ĸ ĺ ļ ľ ¯
ŀ ł ń ñ ň ņ ŉ ! ó ò ô ö õ ŏ ő ō ø ǿ
œ ŕ ř ŗ 0 ś ŝ š ș ş ț ť ţ ŧ ú ù û ü
ũ ŭ ů ű ū ų ẃ ẁ ŵ ẅ ý ỳ ŷ ÿ ź ž ż ʒ
ŋ þ ð ß T ĲVWX Y Z fi fl ff ffi ffl ` a
bcdefg h ĳ ſ k l m n o st q r s
t st v w ª º ⁿ ᵃ ᵇ } ᵈ ᵉ Ä ᵍ Ç É Ñ ᵏ
Ü ᵐ à ᵒ ᵖ ã å ç ᵗ ᵘ ᵛ ë í ì î ï ñ ó
0 1 2 3 4 5 6 7 8 9 ¢ £ § • ¶ ß ® ©
™ ´ ¨ ≠ Æ Ø ∞ ± ≤ ≥ ¥ µ ⁰ ¹ ² ³ ⁴ ⁵
⁶ ⁷ ⁸ ⁹ ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ⁺ ⁻ ⁼ ⁽
⁾ ₊ ₋ ₌ ₍ ₎ ‘ ’ ÷ ◊ % ‰ ⅟ ½ ⅓ ⅔ ¼ ¾
⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞ Í Î Ï Ì Ó Ô  Ò
Ú Û Ù ı ˆ ˜ ¯ ˘ + ± − ÷ × = ≠ ≈ < >

Palatino, glyphs 1–500

132 Chapter 9. Our Typeface

Palatino(Linotype
Palatino Linotype : 1,328 glyphs

Glyphs 450 to 899

≤ ≥ ^ ~ √ ‾ ∞ ∂ ∆ ∏ ∑ Ω Ϝ ∫ ◊ ¬ ⌐ ≡
≅ ∪ ∩ ∨ ∧ ¤ ° # ¥ @ $ B C £ E ¢ ƒ ₡
₢ € ₤ ₧ M ₨ ₣ & „ . , : ; … ‥ ? ¿ !
¡ ‼ ‽ () [] { } ‘ ’ “ ” ‚ ‛ j k l
• ‹ › « » _ ‗ ¶ u @ ℅ † ‡ § * ℮ © ®
™ ′ ″ ℓ □ ▪ ▫ ● ◦ ￼ / \ ⁄ | ‖ ¦ è ‒
– —― (                  ​ ´ ` ˆ ¨
˜ ˇ ˘ ˚ ̦ ¸ ˙ ˝ ™ ˛ ̒ ≠ Æ Ø ∞ ± ≤ ≥
¥ µ ∂ ∑ ∏ π ∫ ª º Ω æ ø ¿ ¡ ¬ √ ƒ ≈
∆ « » А Ӑ Б В Г Ѓ Ғ Д Е Ё Ѐ Ӗ Ж Җ Ӂ
З Ҙ И Й Ӣ Ѝ К Ќ Қ Ҝ Ҡ Л М Н Ң О П Р
С Ҫ Т Ү Ұ У Ў Ӯ Ӳ Ф Х Ҳ Ц Ч Ҷ Ҹ ШЩ
Ъ Ы Ь Э ! Ю Я Ѣ Ѫ Ө Ѳ Ѵ Ґ І Ї Ј Ѕ Є
Һ Ћ Ђ Џ ЉЊ а ӑ б в г ѓ ғ д е ё ѐ ӗ
ж җ ӂ D E F з ҙ и й ӣ ѝ к ќ қ ҝ ҡ л
м н ң о п р с ҫ т у ў ү ұ ӯ ӳ ф х ҳ
ц ч ҷ ҹ ш щ ъ ы ь э o ю я ђ є ѕ і ї
ј љ њ һ ћ џ ѣ ~ ѫ ө ѳ ѵ ґ № Ö Ü Α Β
Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ
Φ Χ Ψ Ω ü Ἀ Ἁ Ἂ Ἃ Ἄ Ἅ Ἆ Ἇ ᾈᾉᾊᾋᾌ
ᾍᾎᾏ Ᾰ Ᾱ Ὰ ≥ ᾼ µ Ἐ Ἑ Ἒ Ἓ Ἔ Ἕ Ὲ Ω æ
Ἠ ἩἪἫἬἭἮἯᾘᾙᾚᾛᾜᾝᾞᾟῊ –
ῌ “ Ϊ Ἰ Ἱ Ἲ Ἳ Ἴ Ἵ Ἶ Ἷ Ῐ Ῑ Ὶ fl ‡ Ὀ Ὁ
ὊὋὌ Ὅ Ὸ Ë Ῥ Í Ϋ Ὑ Ὓ Ὕ Ὗ Ῠ Ῡ Ὺ Û Ù
Ὠ Ὡ ὪὫὬ Ὥ Ὦ ὯᾨᾩᾪᾫᾬᾭᾮᾯῺ '

Palatino, glyphs 501–1000. (The blank ones are spaces of various
widths and types.)

Chapter 9. Our Typeface 133

Palatino(Linotype
Palatino Linotype : 1,328 glyphs

Glyphs 900 to 1,327

ῼ α β γ δ ε ζ η θ ι κ λ 4 ν ξ ο π ρ
ς σ τ υ φ χ ψ ω ϐ ϑ ϕ ϖ F G ὰ ἁ ἀ ἅ
ἃ ἄ ἂ ἆ ἇ ᾀ ᾁ ᾂ ᾃ ᾄ ᾅ ᾆ ᾇ ᾰ ᾱ ᾲ ᾳ ᾴ
ᾶ ᾷ ` a ὲ ἑ ἐ ἕ ἓ ἔ ἒ i j ὴ ἡ ἠ ἥ ἣ
ἤ ἢ ἦ ἧ ᾐ ᾑ ᾒ ᾓ ᾔ ᾕ ᾖ ᾗ ῂ ῃ ῄ ῆ ῇ Å
ϊ É ὶ ἱ ἰ ἵ ἳ ἴ ἲ ῖ ἶ ἷ ΐ ῒ ΐ ῐ ῑ ῗ
î ï ὸ ὁ ὀ ὅ ὃ ὄ ὂ ῥ ῤ ΰ ϋ ° ¢ ὺ ὑ ὐ
ὕ ὓ ὔ ὒ ῦ ὖ ὗ ΰ ῢ ῠ ῡ ῧ ≤ ≥ ὼ ὡ ὠ ὥ
ὣ ὤ ὢ ῶ ὦ ὧ ᾠ ᾡ ᾢ ᾣ ᾤ ᾥ ᾦ ᾧ ῲ ῳ ῴ ῷ
Ϛ Ϟ Ϡ ϰ ; ͵ ʹ ͺ ΄ ΅ · ῁ ᾽ ι ᾿ ῾ ´ `
῎ ῍ ῞ ῝ ῀ ῏ ῟ „ ΅ ῭ Ê Á Ơ ơ Ư ư ₫ ̣
̀ ́ ̃ ̉ Ú Û Ù ı ˆ ˜ ¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ
! " # $ % & ' () * + , - . / 0 1 2
3 4 5 6 7 8 9 : ; < = > ? @ A B C D
E F G H I J K L M N O P Q R S T U V
W X Y Z [\] ^ _ ` a b c d e f g h
i j k l m n o p q r s t u v w x y z
{ | } ~ � Ä Å Ç É Ñ Ö Ü á à â ä ã å
ç é è ê ë í ì î ï ñ ó ò ô ö õ Ạ ạ Ả
ả Ấ ấ Ầ ầ Ẩ ẩ Ẫ ẫ Ậ ậ Ắ ắ Ằ ằ Ẳ ẳ Ẵ
ẵ Ặ ặ Ẹ ẹ Ẻ ẻ Ẽ ẽ Ế ế Ề ề Ể ể Ễ ễ Ệ
ệ Ỉ ỉ Ị ị Ọ ọ Ỏ ỏ Ố ố Ồ ồ Ổ ổ Ỗ ỗ Ộ
ộ Ớ ớ Ờ ờ Ở ở Ỡ ỡ Ợ ợ Ụ ụ Ủ ủ Ứ ứ Ừ
ừ Ử ử Ữ ữ Ự ự Ỵ ỵ Ỷ ỷ Ỹ ỹ ₠

Palatino, glyphs 1000–1328

134 Chapter 9. Our Typeface

Problems

Solutions on page 166.

The following words have been badly spaced. Photocopy or print
out this page, cut out the letters, and then paste them onto another
page along a straight line, finding an arrangement which is neither
too tight nor too loose.

1. P a l a t i no
2. A V E R
S I O N

3. Con j e c t ure

Chapter 10

Words to Paragraphs

We have learned how to design individual characters of a typeface
using lines and curves, and how to combine them into lines. Now
we must combine the lines into paragraphs, and the paragraphs into
pages. Look at the following two paragraphs from Franz Kafka’s
Metamorphosis:

One morning, when Gregor Samsa woke from trou-
bled dreams, he found himself transformed in his bed
into a horrible vermin. He lay on his armour-like back,
and if he lifted his head a little he could see his brown
belly, slightly domed and divided by arches into stiff
sections. The bedding was hardly able to cover it and
seemed ready to slide off any moment. His many legs,
pitifully thin compared with the size of the rest of him,
waved about helplessly as he looked.

“What’s happened to me?” he thought. It wasn’t
a dream. His room, a proper human room although a
little too small, lay peacefully between its four familiar
walls. A collection of textile samples lay spread out
on the table – Samsa was a travelling salesman – and
above it there hung a picture that he had recently cut
out of an illustrated magazine and housed in a nice,
gilded frame. It showed a lady fitted out with a fur hat
and fur boa who sat upright, raising a heavy fur muff
that covered the whole of her lower arm towards the
viewer.

135

136 Chapter 10. Words to Paragraphs

What do we notice? The left and right hand sides of the block of
text are straight – no ragged edges. This is called full justification. We
notice that some of the lines have a hyphen at the end, in the middle
of a word. Looking carefully, we see that the spacing between words
is not consistent from line to line. The last line of each paragraph
does not go all the way to the end; the first may be indented.

How do we build a line from a list of letters? We know that each
letter in a typeface has an origin, as well as an advancement which
specifies how far to move to the right after drawing a character. We
know also about kerning, which tells us that certain letter combina-
tions must appear closer together. Here is a line of text, showing
the (usually invisible) boxes which help to position each character:

“What’s happened to me”, he thought.
‘‘What’shappenedtome’’,hethought.

If all our characters fortuitously added up to the correct width
for a line, or we were happy to break words with hyphens any-
where, or we did not want a straight right edge, this is all we would
have to do. We would draw the characters in order until we reached
the end of a line, and then start on the next line, moving down the
page the right amount (called the leading – pronounced “ledding”).
Alas, the world is not that simple, and we must add space to fill out
the line. This can look poor if done badly, especially when a narrow
column is used, such as in a newspaper:

Full justification
in a narrow
column can lead
to big gaps
between words
and letters.

� � � �ȱ
�������������ȱ ��ȱ
�ȱ ����� ȱ
������ȱ ���ȱ
����ȱ ���ȱ ����ȱ
��� ���ȱ ����ȱ
���ȱ�������ǯ

Here, space has been added not only between words but be-
tween letters, to make the line fit. Generally, we like to add most
of the needed space between words, rather than between individ-
ual letters. Here is a paragraph typeset to three different column
widths:

Chapter 10. Words to Paragraphs 137

One morning,
when Gregor
Samsa woke
from troubled
dreams, he
found himself
transformed in
his bed into a
horrible vermin.
He lay on his
armour-like
back, and if
he. . .

One morning, when
Gregor Samsa woke
from troubled dreams,
he found himself trans-
formed in his bed into
a horrible vermin. He
lay on his armour-like
back, and if he lifted his
head a little he could see
his brown belly, slightly
domed and divided by
arches into stiff sections.

One morning, when Gregor
Samsa woke from troubled
dreams, he found himself
transformed in his bed into a
horrible vermin. He lay on his
armour-like back, and if he lifted
his head a little he could see
his brown belly, slightly domed
and divided by arches into stiff
sections.

Notice how the result improves as the column becomes wider;
fewer compromises have to be made. In fact, no hyphens at all
were required in the widest case. In the narrowest column, we have
refused to add extra space between the letters of the compound
word “armour-like”, but chose rather to produce an underfull line
in this case. This decision is a matter of taste, of course. Another
option is to give up on the idea of straight left and right edges,
and set the text ragged-right. The idea is to make no changes in the
spacing of words at all, just ending a line when the next word will
not fit. This also eliminates hyphenation. Here is a paragraph set
first ragged right, and then fully justified:

One morning, when
Gregor Samsa woke from
troubled dreams, he found
himself transformed in his
bed into a horrible vermin.
He lay on his armour-like
back, and if he lifted his
head a little he could see
his brown belly, slightly
domed and divided by
arches into stiff sections.

One morning, when Gre-
gor Samsa woke from trou-
bled dreams, he found him-
self transformed in his bed
into a horrible vermin. He
lay on his armour-like back,
and if he lifted his head a lit-
tle he could see his brown
belly, slightly domed and
divided by arches into stiff
sections.

If we decide we must hyphenate a word because we cannot
stretch or shrink a line without making it too ugly, how do we
choose where to break it? We could just hyphenate as soon as
the line is full, irrespective of where we are in the word. In the
following example, the paragraph on the left prefers hyphenation

138 Chapter 10. Words to Paragraphs

at any point to adding or removing space between words. The
paragraph on the right follows usual typesetting and hyphenation
rules, preferring the adding of space to hyphenation.

One morning, when Gregor
Samsa woke from trouble-
d dreams, he found hims-
elf transformed in his bed
into a horrible vermin. He
lay on his armour-like back,
and if he lifted his head a
little he could see his brow-
n belly, slightly domed and
divided by arches into stiff
sections.

One morning, when Gre-
gor Samsa woke from trou-
bled dreams, he found
himself transformed in his
bed into a horrible vermin.
He lay on his armour-like
back, and if he lifted his
head a little he could see
his brown belly, slightly
domed and divided by
arches into stiff sections.

These are very ugly hyphenations, however: we have “trouble-
d”, “hims-elf”, and “brow-n”. Every word has places which are
better or worse for hyphenation. We would prefer “trou-bled” and
“him-self”. Ideally “brown” should not be hyphenated at all. Some
words must be hyphenated differently depending on context: “rec-
ord” for the noun, “re-cord” for the verb, for example. In addition,
authorities on hyphenation (such as dictionaries which include
hyphenation information) do not always agree: Webster has “in-de-
pen-dent” and “tri-bune”, American Heritage has “in-de-pend-ent”
and “trib-une”. There are words which should never be hyphenated.
For example, there is no really good place to break “squirm”.

There are two methods for solving this problem automatically
as the computer typesets the lines: a dictionary-based system simply
stores an entire word list with the hyphenation points for each
word. This ensures perfect hyphenation for known words, but does
not help us at all when a new word is encountered (as it often is
in scientific or technical publications, or if we need to hyphenate a
proper noun, such as a the name of a person or city). The alternative
is a rule-based system, which follows a set of rules about what are
typically good and bad breaks. For example “a break is always
allowable after “q” if followed by a vowel” or “a hyphen is fine
before -ness” or “a hyphen is good between “x” and “p” in all
circumstances”. We may also have inhibiting rules such as “never
break b-ly”. Some patterns may only apply at the beginning or
end of a word, others apply anywhere. In fact, these rules can
be derived automatically from a list of the correct hyphenations,
and be expected to work well for other unknown words (assuming

Chapter 10. Words to Paragraphs 139

those words are in the same language – we require a hyphenation
dictionary for each language appearing in the document). For
example, in the typesetting system used for this book, there are 8527
rules, and only 8 exceptional cases which must be listed explicitly:

uni-ver-sity ma-nu-scripts
uni-ver-sit-ies re-ci-pro-city
how-ever through-out
ma-nu-script some-thing

Thus far, we have assumed that decisions on hyphenation are
made once we reach the end of a line and find we are about to
overrun it. If we are, we alter the spacing between words, or hy-
phenate, or some combination of the two. And so, at most we need
to re-typeset the current line. Advanced line breaking algorithms
use a more complicated approach, seeking to optimise the result for
a whole paragraph. (We have gone line-by-line, making the best
line we can for the first line, then the second etc.) It may turn out
that an awkward situation later in the paragraph is prevented by
making a slightly less-than-optimal decision in an earlier line, such
as squeezing in an extra word or hyphenating in a good position
when not strictly required. We can assign “demerits” to certain
situations (a hyphenation, too much or too little spacing between
words, and so on) and optimise the outcome for the least sum of
such demerits. These sorts of optimisation algorithms can be quite
slow for large paragraphs, taking an amount of time equal to the
square of the number of lines in the paragraph. For normal texts,
this is not a problem, since we are unlikely to have more than a few
tens of lines in a single paragraph.

We have now dealt with splitting a text into lines and para-
graphs, but similar problems occur when it comes to fitting those
paragraphs onto a page. There are two worrying situations: when
the last line of a paragraph is “widowed” at the top of the next
page, and when the first line of a paragraph is “orphaned” on the
last line of a page. Examples of a widow and an orphan are shown
on the next page. It is difficult to deal with these problems with-
out upsetting the balance of the whole two-page spread, but it can
be done by slightly increasing or decreasing line spacing on one
side. Another option, of course, is to edit the text, and you may be
surprised to learn how often that happens.

Further small adjustments and improvements to reduce the
amount of hyphenation can be introduced using so-called microty-
pography. This involves stretching or shrinking the individual char-

140 Chapter 10. Words to Paragraphs

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tris-
tique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.
Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultri-
ces bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis
eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi
auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies
et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet
magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque
cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat
at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec non-
ummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum
massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec,
leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, sus-
cipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat
lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna.
Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus
eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae
lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam
facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet,
enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus
eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus

1

quis tortor vitae risus porta vehicula.
Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla

a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.
Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis
lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis
eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo
lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula
sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla
egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus
vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet,
laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum
at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet,
fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula,
urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed
nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo
pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in,
fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio.
Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan
risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit.
Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,
volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac
sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies
tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum
vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet,
egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo.
Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, con-
sectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus.
Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Sus-
pendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui.
Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo,
facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec
commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat
vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin male-
suada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas

2

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla.
Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis,
mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim.
Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibu-
lum imperdiet neque non sem accumsan laoreet. In hac habitasse platea
dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl
aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus.
Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec
pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin
euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc
lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu
dolor.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tris-
tique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.
Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultri-
ces bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis
eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi
auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies
et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet
magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque
cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat

1

at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec non-
ummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum
massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec,
leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, sus-
cipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat
lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna.
Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus
eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae
lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam
facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet,
enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus
eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus
quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla
a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.
Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis
lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis
eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo
lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula
sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla
egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus
vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet,
laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum
at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet,
fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula,
urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed
nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo
pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in,
fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio.
Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan
risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit.
Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,
volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac
sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies
tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per

2

A widow (top) and orphan (bottom).

Chapter 10. Words to Paragraphs 141

acters in a line, hoping to make the line fit without the need for
hyphenation. Of course, if taken to extremes, this would remove all
hyphens, but make the page unreadable! Shrinking or stretching
by up to 2% seems to be hard to notice, though. Can you spot the
use of microtypography in the paragraphs of this book?

Another way to improve the look of a paragraph is to allow
punctuation to hang over the end of the line. For example, a comma
or a hyphen should hang a little over the right hand side – this
makes the block of the paragraph seem visually more straight, even
though really we have made it less straight. Here is a narrow para-
graph without overhanging punctuation (left), then with (middle):

One morning, when
Gregor Samsa woke
from troubled dreams,
he found himself trans-
formed in his bed into a
horrible vermin. He lay
on his armour-like back,
and if he lifted his head
a little he could see his
brown belly, slightly
domed and divided. . .

One morning, when
Gregor Samsa woke
from troubled dreams,
he found himself trans-
formed in his bed into
a horrible vermin. He
lay on his armour-like
back, and if he lifted his
head a little he could see
his brown belly, slightly
domed and divided. . .

One morning, when
Gregor Samsa woke
from troubled dreams,
he found himself trans-
formed in his bed into
a horrible vermin. He
lay on his armour-like
back, and if he lifted his
head a little he could see
his brown belly, slightly
domed and divided. . .

The vertical line (far right) highlights the overhanging hyphens
and commas used to keep the right hand margin visually straight.
A further distracting visual problem in paragraphs is that of rivers.
These are the vertical lines of white space which occur when spaces
on successive lines are in just the wrong place:

Ut elementum auctor metus. Mauris vestibulum neque vitae eros. Pellen-
tesque aliquam quam. Donec venenatis tristique purus. In nisl. Nulla velit
libero, fermentum at, porta a, feugiat vitae, urna. Etiam aliquet ornare ip-
sum. Proin non dolor. Aenean nunc ligula, venenatis suscipit, porttitor sit
amet, mattis suscipit, magna. Vivamus egestas viverra est. Morbi at risus
sed sapien sodales pretium.

Morbi congue congue metus. Aenean sed purus. Nam pede magna, tris-
tique nec, porta id, sollicitudin quis, sapien. Vestibulum blandit. Suspendisse
ut augue ac nibh ullamcorper posuere. Integer euismod, neque at eleifend
fringilla, augue elit ornare dolor, vel tincidunt purus est id lacus. Viva-
mus lorem dui, commodo quis, scelerisque eu, tincidunt non, magna. Cras
sodales. Quisque vestibulum pulvinar diam. Phasellus tincidunt, leo vi-
tae tristique facilisis, ipsum wisi interdum sem, dapibus semper nulla velit
vel lectus. Cras dapibus mauris et augue. Quisque cursus nulla in libero.
Suspendisse et lorem sit amet mauris malesuada mollis. Nullam id justo.
Maecenas venenatis. Donec lacus arcu, egestas ac, fermentum consectetuer,
tempus eu, metus. Proin sodales, sem in pretium fermentum, arcu sapien
commodo mauris, venenatis consequat augue urna in wisi. Quisque sapien
nunc, varius eget, condimentum quis, lacinia in, est. Fusce facilisis. Praesent
nec ipsum.

Suspendisse a dolor. Nam erat eros, congue eget, sagittis a, lacinia in,
pede. Maecenas in elit. Proin molestie varius nibh. Vivamus tristique pu-
rus sed augue. Proin egestas semper tortor. Vestibulum ante ipsum primis
in faucibus orci luctus et ultrices posuere cubilia Curae; Class aptent tac-
iti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.
Vestibulum orci enim, sagittis ornare, eleifend ut, mattis at, ligula. Nulla
molestie convallis arcu. Ut eros tellus, condimentum at, sodales in, ultrices
vel, nulla.

Duis magna ante, bibendum eget, eleifend eget, suscipit sed, neque. Vestibu-
lum in mi sed massa cursus cursus. Pellentesque pulvinar mollis neque. Fusce
ut enim vitae mauris malesuada tincidunt. Vivamus a neque. Mauris pul-
vinar, sapien id condimentum dictum, quam arcu rhoncus dui, id tempor
lacus justo et justo. Proin sit amet orci eu diam eleifend blandit. Nunc erat
massa, luctus ac, fermentum lacinia, tincidunt ultrices, sapien. Praesent sed
orci vitae dolor sollicitudin adipiscing. Cras a neque. Ut risus dui, interdum
at, placerat id, tristique eu, enim. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Etiam adipiscing eros vestibulum
dolor. Pellentesque aliquam, diam eget eleifend posuere, augue eros porttitor
lectus, ac dignissim dui metus nec felis. Quisque lacinia. Vestibulum tellus.
Suspendisse nec wisi. Aenean ac felis. Aliquam ultrices metus et nulla.

Praesent sed est non nibh tempus venenatis. Praesent rhoncus. Curabitur

23

142 Chapter 10. Words to Paragraphs

Ut elementum auctor metus. Mauris vestibulum neque vitae eros. Pellen-
tesque aliquam quam. Donec venenatis tristique purus. In nisl. Nulla velit
libero, fermentum at, porta a, feugiat vitae, urna. Etiam aliquet ornare ip-
sum. Proin non dolor. Aenean nunc ligula, venenatis suscipit, porttitor sit
amet, mattis suscipit, magna. Vivamus egestas viverra est. Morbi at risus
sed sapien sodales pretium.

Morbi congue congue metus. Aenean sed purus. Nam pede magna, tris-
tique nec, porta id, sollicitudin quis, sapien. Vestibulum blandit. Suspendisse
ut augue ac nibh ullamcorper posuere. Integer euismod, neque at eleifend
fringilla, augue elit ornare dolor, vel tincidunt purus est id lacus. Viva-
mus lorem dui, commodo quis, scelerisque eu, tincidunt non, magna. Cras
sodales. Quisque vestibulum pulvinar diam. Phasellus tincidunt, leo vi-
tae tristique facilisis, ipsum wisi interdum sem, dapibus semper nulla velit
vel lectus. Cras dapibus mauris et augue. Quisque cursus nulla in libero.
Suspendisse et lorem sit amet mauris malesuada mollis. Nullam id justo.
Maecenas venenatis. Donec lacus arcu, egestas ac, fermentum consectetuer,
tempus eu, metus. Proin sodales, sem in pretium fermentum, arcu sapien
commodo mauris, venenatis consequat augue urna in wisi. Quisque sapien
nunc, varius eget, condimentum quis, lacinia in, est. Fusce facilisis. Praesent
nec ipsum.

Suspendisse a dolor. Nam erat eros, congue eget, sagittis a, lacinia in,
pede. Maecenas in elit. Proin molestie varius nibh. Vivamus tristique pu-
rus sed augue. Proin egestas semper tortor. Vestibulum ante ipsum primis
in faucibus orci luctus et ultrices posuere cubilia Curae; Class aptent tac-
iti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.
Vestibulum orci enim, sagittis ornare, eleifend ut, mattis at, ligula. Nulla
molestie convallis arcu. Ut eros tellus, condimentum at, sodales in, ultrices
vel, nulla.

Duis magna ante, bibendum eget, eleifend eget, suscipit sed, neque. Vestibu-
lum in mi sed massa cursus cursus. Pellentesque pulvinar mollis neque. Fusce
ut enim vitae mauris malesuada tincidunt. Vivamus a neque. Mauris pul-
vinar, sapien id condimentum dictum, quam arcu rhoncus dui, id tempor
lacus justo et justo. Proin sit amet orci eu diam eleifend blandit. Nunc erat
massa, luctus ac, fermentum lacinia, tincidunt ultrices, sapien. Praesent sed
orci vitae dolor sollicitudin adipiscing. Cras a neque. Ut risus dui, interdum
at, placerat id, tristique eu, enim. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Etiam adipiscing eros vestibulum
dolor. Pellentesque aliquam, diam eget eleifend posuere, augue eros porttitor
lectus, ac dignissim dui metus nec felis. Quisque lacinia. Vestibulum tellus.
Suspendisse nec wisi. Aenean ac felis. Aliquam ultrices metus et nulla.

Praesent sed est non nibh tempus venenatis. Praesent rhoncus. Curabitur

23

We have shown the river with a line. Notice that the word “fermen-
tum” appearing in almost the same place on two successive lines is
also distracting. The problem is difficult to deal with automatically,
and the text may have to be edited to fix it. The microtypographical
techniques discussed above can help a little – since there are fewer
widened spaces between words, the rivers will be narrower and
less noticeable.

You may wonder how type was set before computers. In much
the same way, it turns out, but with many more manual steps and a
lot of little pieces of metal. Here is one such piece, for the character
“n” at a particular size, in a particular typeface:

These are picked from a tray of boxes, by hand, and placed into
rows into a composing stick, each word separated by little metal
spaces, each row spaced by a metal strip (the leading). You can
imagine that many many copies of these little metal pieces were
required for each typeface and size, so it was an expensive business.
Because it will eventually be used for printing by being inked and
stamped or rolled on paper, the type is mirrored, and hard to read,
and one must be careful not to mix up “p” and “q”, or “b” and “d”.
(This is one possible origin of the phrase "mind your Ps and Qs".)
This painstaking process is shown on the opposite page.

Chapter 10. Words to Paragraphs 143

The finished paragraphs of type are arranged in a galley. This
will be used to make prints of the page (or pages – two or four may
be printed from one galley, then folded and cut). You can imagine
how long it takes to make up the galleys for a book, and how much
time is required to justify each line by inserting exactly the right
spaces and hyphenating by hand. Mistakes found after test prints
can be very costly to fix, since they necessitate taking apart the

144 Chapter 10. Words to Paragraphs

galley and replacing not just a single character, but perhaps re-
typesetting a whole paragraph. Here is a galley, ready for printing:

Eventually, machines were developed to automatically place
the pieces of type based on what was typed on a keyboard and to
automatically justify each line. Such mechanical systems were in
common use until the advent of so-called phototypesetting. This
involved building an image by shining light through a series of sten-
cils onto photosensitive paper, then photographing it. Computer
typesetting supplanted both in the late twentieth century.

Chapter 10. Words to Paragraphs 145

Problems

Solutions on page 166.

Identify good hyphenation points in the following words:

1. hyphenation

2. fundraising

3. arithmetic (noun)

4. arithmetic (adjective)

5. demonstration

6. demonstrative

7. genuine

8. mountainous

Solutions

Chapter 1

1

For the diamond, if we start on the left hand side, we have (2,10)—
(10,18)—(18,10)—(10,2)—(2,10). For the star, if we start at the
bottom left point, we have (3,3)—(10,19)—(17,3)—(1,13)—(19,13)—
(3,3).

2

We see a crude representation of the letter E, and the Maltese cross.

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

147

148 Solutions

3

For example:

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

4

For example:

Solutions 149

Chapter 2

1

We assign the letters ABCD as in the chapter text:

A

B

C

D

Now, we continue the construction as before, making sure we are
not confused by the fact that the line BC now crosses the curve:

150 Solutions

A

B

C

D

E

F
G

Finally, we finish the construction all the way to J, so our diagram
looks like this:

A

B

C

D

E

F
G

H

I

J

Solutions 151

So we have the new Bézier curves AEHJ and JIFD as before:

3

With the even-odd rule:

With the non-zero rule:

Chapter 3

1

32-11-42-54-23-11-14-11-31-24-44-44-31-15-31-11-32-12. There are 18
characters in the message, and so 36 numbers to transmit (though
in Polybius’s system of torches, these would be done two at a time,
so just 18 distinct actions). We might use Z for the space character,
since it doesn’t appear often in normal text. We could use ZZZ for
end of message.

152 Solutions

2

We have 32 rows:

Bits Number Letter Bits Number Letter
00000 0 A 10000 16 Q
00001 1 B 10001 17 R
00010 2 C 10010 18 S
00011 3 D 10011 19 T
00100 4 E 10100 20 U
00101 5 F 10101 21 V
00110 6 G 10110 22 W
00111 7 H 10111 23 X
01000 8 I 11000 24 Y
01001 9 J 11001 25 Z
01010 10 K 11010 26 space
01011 11 L 11011 27 .
01100 12 M 11100 28 ,
01101 13 N 11101 29 :
01110 14 O 11110 30 ;
01111 15 P 11111 31 ?

Here, we choose the capital letters and the punctuation space . , : ; ?
and hope this covers most useful messages.

3

Treason is very much a matter of habit, Smiley decided.

4

84 104 101 109 111 114 101 105 100 101 110 116 105 116 105 101 115
97 109 97 110 104 97 115 44 116 104 101 109 111 114 101 116 104 101
121 101 120 112 114 101 115 115 116 104 101 112 101 114 115 111 110
116 104 101 121 99 111 110 99 101 97 108 46

5

a) The love of money is the root of *all* evil.

Solutions 153

b) The love of \$\$\$ is the root of all evil.

c) The love of $\$\$\$$ is the root of all evil.

d) The love of *\$$\$$\$* is the root of all evil.

Chapter 4

1

a) The pattern does not match.

b) The pattern matches at position 17.

c) The pattern matches at positions 28 and 35.

d) The pattern matches at position 24.

2

a) The texts aa, aaa, and aaa etc. match.

b) The texts ac and abc only match.

c) The texts ac, abc, and abbc etc. match.

d) The texts ad, abd, acd, abbd, accd, abcd, acbd, and abbbd etc.
match.

3

a) The pattern matches at positions 16 and 17.

b) The pattern matches at positions 0 and 24.

c) The pattern matches at positions 0, 1, 24, and 25.

d) The pattern matches at postiions 0, 1, 24, and 25.

154 Solutions

Chapter 6

1

Letter Frequency Code Letter Frequency Code
space 41 111 u 5 110100
e 18 100 v 4 110011
o 14 1011 w 4 110010
t 14 0111 f 4 110001
a 13 0110 ’ 4 010111
h 12 0100 y 3 010101
r 11 0011 . 3 01010000
n 11 0010 , 3 01010001
s 10 0000 p 2 01010010
i 9 11011 I 2 01010011
c 8 10101 q 1 01011000
m 6 10100 E 1 01011001
l 6 00011 S 1 01011010
g 6 110101 T 1 01011011

So we have:

' I h a v e a
010111 01010011 111 0100 0110 110011 100 111 0110 111
t h e o r y w h i
0111 0100 100 1011 0011 010101 111 110010 0100 11011
c h I s u s p
10101 0100 111 01010011 111 0000 110100 0000 01010010
e c t i s r a t h
100 10101 0111 111 11011 0000 111 0011 0110 0111 0100
e r i m m o r a l
100 0011 111 11011 10100 10100 1011 0011 0110 00011
, ' S m i l e y
01010001 010111 111 01011010 10100 11011 00011 100 010101

w e n t o n ,
111 110010 100 0010 0111 111 1011 0010 01010001 111
m o r e l i g h t
10100 1011 0011 100 111 00011 11011 110101 0100 0111
l y .
00011 010101 01010000

Solutions 155

2

There are moments which are made up of too much stuff for them
to be lived at the time they occur.

3

The lengths and colours are:

Colour Length Code Colour Length Code
White 37 00010110 White 10 00111
White 5 1100 White 2 0111
Black 2 11 Black 8 000101
White 7 1111 White 3 1000
Black 7 00011 Black 2 11
White 7 1111 White 5 1100
Black 6 0010 Black 3 10
White 3 1000 White 2 0111
White 4 1011 Black 2 11
Black 4 011 White 10 00111
White 5 1100 White 2 0111
Black 9 000100 Black 8 000101
White 4 1011 White 3 1000
Black 9 000100 Black 2 11
White 2 0111 White 6 1110
White 4 1011 Black 2 11
Black 4 011 White 2 0111
White 5 1100 Black 2 11
Black 2 11 White 7 1111
White 5 1100 Black 2 11
Black 3 10 White 1 0000111
White 3 1000 White 1 0000111
Black 2 11 Black 3 10
White 5 1100 White 4 1011
Black 3 10 Black 3 10
White 1 0000111 White 2 0111
White 4 1011 Black 2 11

156 Solutions

Black 5 0011 White 6 1110
White 4 1011 Black 2 11
Black 2 11 White 2 0111
White 6 1110 Black 3 10
Black 2 11 White 6 1110
White 2 0111 Black 2 11
Black 2 11 White 1 0000111
White 7 1111 White 1 0000111
Black 2 11 Black 2 11
White 1 0000111 White 6 1110
White 3 1000 Black 2 11
Black 2 11 White 2 0111
White 2 0111 Black 2 11
Black 2 11 White 6 1110
White 4 1011 Black 2 11
Black 2 11 White 3 1000
White 5 1100 Black 2 11
Black 3 10 White 5 1100
White 2 0111 Black 3 10
Black 2 11 White 1 0000111
White 10 00111 White 1 0000111
White 3 1000 Black 2 11
Black 2 11 White 6 1110
White 2 0111 Black 3 10
Black 2 11 White 1 0000111
White 4 1011 Black 10 0000100
Black 9 000100 White 3 1000
White 3 1000 Black 9 000100
Black 2 11 White 2 0111
White 10 00111 Black 2 11
White 2 0111 White 8 1011
Black 3 10 Black 2 11
White 2 0111 White 2 0111
Black 3 10 Black 7 00011
White 3 1000 White 6 1110

Solutions 157

Black 9 000100 Black 7 00011
White 3 1000 White 3 1000
Black 2 11 White 37 00010110

So we have:

000101101100111111000111111001010001011011110000010
010110001000111101101111001111001010001111001100001
111011001110111111101101111111111100001111000110111
010101111110010011111001111000110111111011000100100
011001110111100111101000000100100011001110111000101
100011111011011111111111000011100001111010111010111
111101110001111101100001110000111111110110111111110
111000111100100000111000011111111010000011100001011
000000100011111101111011100011111000010110000001011
0

4

The codes are:

Code Length Colour Code Length Colour
00010110 37 White 000100 9 Black
0000111 1 White 0111 2 White
00011 7 Black 11 2 Black
1111 7 White 1100 5 White
00011 7 Black 10 3 Black
1100 5 White 0111 2 White
00011 7 Black 11 2 Black
1000 3 White 1011 8 White
000100 9 Black 11 2 Black
1011 4 White 0111 2 White
0000100 10 Black 11 2 Black
1000 3 White 1100 5 White
000100 9 Black 10 3 Black
0111 2 White 0000111 1 White
11 2 Black 11 2 Black
1100 5 White 1110 6 White
10 3 Black 11 2 Black

158 Solutions

1000 3 White 0111 2 White
10 3 Black 11 2 Black
1100 5 White 1011 8 White
10 3 Black 11 2 Black
0111 2 White 0111 2 White
11 2 Black 11 2 Black
1100 5 White 1110 6 White
10 3 Black 11 2 Black
0000111 1 White 0000111 1 White
11 2 Black 11 2 Black
1110 6 White 1110 6 White
11 2 Black 11 2 Black
0111 2 White 0111 2 White
10 3 Black 10 3 Black
1111 7 White 1110 6 White
11 2 Black 10 3 Black
0111 2 White 0111 2 White
11 2 Black 11 2 Black
1110 6 White 1110 6 White
11 2 Black 11 2 Black
0000111 1 White 0000111 1 White
11 2 Black 11 2 Black
1100 5 White 1110 6 White
10 3 Black 11 2 Black
0111 2 White 0111 2 White
11 2 Black 011 4 Black
1011 8 White 1100 5 White
11 2 Black 11 2 Black
0111 2 White 1000 3 White
11 2 Black 11 2 Black
1100 5 White 1110 6 White
10 3 Black 11 2 Black
0000111 1 White 0000111 1 White
000100 9 Black 0000100 10 Black
1000 3 White 1000 3 White

Solutions 159

11 2 Black 0000100 10 Black
1011 8 White 1000 3 White
11 2 Black 000100 9 Black
0111 2 White 0111 2 White
000100 9 Black 0000111 1 White
0111 2 White 00011 7 Black
000100 9 Black 1111 7 White
1000 3 White 0010 6 Black
11 2 Black 1110 6 White
1011 8 White 0010 6 Black
11 2 Black 1011 4 White
0111 2 White 00010110 37 White

So we have the image:

Chapter 7

1

a)

+

1+

11

(1 + 1) + 1

=⇒ 2 + 1
=⇒ 3

160 Solutions

b)

×

2×

22

(2× 2)× 2

=⇒ 4× 2
=⇒ 8

c)

+

4×

32

(2× 3) + 4

=⇒ 6 + 4
=⇒ 10

2

a)

x× x× y
=⇒ 4× 4× 5
=⇒ 16× 5
=⇒ 80

z× y + z
=⇒ 100× 5 + 100
=⇒ 500 + 100
=⇒ 600

b)

z× z
=⇒ 100× 100
=⇒ 10000

Solutions 161

3

a)

f 4 5
=⇒ 4× 5× 4
=⇒ 20× 4
=⇒ 80

b)

f (f 4 5) 5

=⇒ f 80 5
=⇒ 80× 5× 80
=⇒ 400× 80
=⇒ 32000

c)

f (f 4 5) (f 4 5)

=⇒ f 80 80
=⇒ 80× 80 × 80
=⇒ 32000× 80
=⇒ 512000

4

a)

f 5 4 = f 4 5
=⇒ 80 = 80
=⇒ true

b)

if 1 = 2 then 3 else 4
=⇒ if false then 3 else 4
=⇒ 4

162 Solutions

c)

if (if 1 = 2 then false else true) then 3 else 4

=⇒ if true then 3 else 4
=⇒ 3

5

a)

head [2, 3, 4]

=⇒ 2

b)

tail [2]

=⇒ []

c)

head [2, 3, 4] • [2, 3, 4]

=⇒ [2] • [2, 3, 4]

=⇒ [2, 2, 3, 4]

6

a) [] (first if)

b) [1] (second if)

c) [1, 3] (via 1 • odds [])

Solutions 163

Chapter 8

1

164 Solutions

2

Solutions 165

3

166 Solutions

Chapter 9

1

Palatino
2

AVERSION
3

Conjecture
Chapter 10

1

hy-phen-a-tion

2

fund-raising

3

a-rith-me-tic (the noun)

4

ar-ith-me-tic (the adjective)

5

dem-on-stra-tion

Solutions 167

6

de-mon-stra-tive

7

gen-u-ine

8

moun-tain-ous

Further Reading

There follows a list of interesting books for each chapter. Some are
closely related to the chapter contents, some tangentially. The level
of expertise required to understand each of them varies quite a bit,
but do not be afraid to read books you do not understand all of,
especially if you can obtain or borrow them at little cost.

Chapter 1

Computer Graphics: Principles and Practice James D. Foley, Andries
van Dam, Steven K. Fiener, and John F. Hughes. Published by
Addison Wesley (second edition, 1995). ISBN 0201848406.

Contemporary Newspaper Design: Shaping the News in the Digital Age –
Typography & Image on Modern Newsprint John D. Berry and Roger
Black. Published by Mark Batty (2007). ISBN 0972424032.

Chapter 2

A Book of Curves E. H. Lockwood. Published by Cambridge Univer-
sity Press (1961). ISBN 0521044448.

Fifty Typefaces That Changed the World: Design Museum Fifty John L.
Waters. Published by Conran (2013). ISBN 184091629X.

Thinking with Type: A Critical Guide for Designers, Writers, Editors,
and Students Ellen Lupton. Published by Princeton Architectural
Press (second edition, 2010). ISBN 1568989695.

169

170 Further Reading

Chapter 3

The Histories Polybius (translated by Robin Waterfield). Published
by Oxford University Press under the Oxford World Classics im-
print (2010). ISBN 0199534705.

Code: The Hidden Language of Computer Hardware and Software Charles
Petzold. Published by Microsoft Press (2000). ISBN 0735611319.

Unicode Explained Jukka K. Korpela. Published by O’Reilly Media
(2006). ISBN 059610121X.

The Decipherment of Linear B John Chadwick. Published by Cam-
bridge University Press (second edition, 1967). ISBN 1107691761.

Chapter 4

Introduction to Algorithms T. Cormen, C. Leiserson, R. Rivest, and
C. Stein. Published by MIT Press (third edition, 2009). ISBN
0262533057.

Flexible Pattern Matching in Strings: Practical On-Line Search Algo-
rithms for Texts and Biological Sequences Gonzalo Navarro and Math-
ieu Raffinot. Published by Cambridge University Press (2007). ISBN
0521039932.

Google’s PageRank and Beyond: The Science of Search Engine Rankings
Amy N. Langville and Carl D. Meyer. Published by Princeton
University Press (2012). ISBN 0691152667.

Chapter 5

The Wonderful Writing Machine Bruce Bliven, Jr. Published by Ran-
dom House (1954). ISBN 600150329X.

Quirky Qwerty: The Story of the Keyboard @ Your Fingertips Torbjörn
Lundmark. Published by University of New South Wales Press
(2001). ISBN 0868404365.

The Iron Whim : A Fragmented History of Typewriting Darren Wershler-
Henry. Published by McClelland & Stewart (2005). ISBN 0771089252.

Further Reading 171

Chapter 6

Fundamental Data Compression Ida Mengyi Pu. Published by Butter-
worth-Heinemann (2006). ISBN 0750663103.

The Fax Modem Sourcebook Andrew Margolis. Published by Wiley
(1995). ISBN 0471950726.

Introduction to Data Compression Khalid Sayood. Published by Mor-
gan Kaufman in The Morgan Kaufmann Series in Multimedia In-
formation and Systems (fourth edition, 2012). ISBN 0124157963.

Chapter 7

Python Programming for the Absolute Beginner Mike Dawson. Pub-
lished by Course Technology PTR (third edition, 2010). ISBN
1435455002.

OCaml from the Very Beginning John Whitington. Published by Co-
herent Press (2013). ISBN 0957671105.

Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Pro-
gramming Languages Bruce A. Tate. Published by Pragmatic Book-
shelf (2010). ISBN 193435659X.

Chapter 8

How to Identify Prints Bamber Gascgoine. Published by Thames &
Hudson (second edition, 2004). ISBN 0500284806.

A History of Engraving and Etching Arthur M. Hind. Published by
Dover Publications (1963). ISBN 0486209547.

Prints and Printmaking: An Introduction to the History and Techniques
Antony Griffiths. Published by University of California Press (1996).
ISBN 0520207149.

Digital Halftoning Robert Ulichney. Published by The MIT Press
(1987). ISBN 0262210096.

172 Further Reading

Chapter 9

Just My Type: A Book About Fonts Simon Garfield. Published by
Profile Books (2011). ISBN 1846683025.

The Geometry of Type: The Anatomy of 100 Essential Typefaces Stephen
Coles. Published by Thames and Hudson Ltd (2013). ISBN 05002414
22.

The Elements of Typographic Style Robert Bringhurst. Published by
Hartley & Marks (2004). ISBN 0881792065.

Chapter 10

Micro-typographic extensions to the TEX typesetting system PhD Thesis,
Hàn Thế Thành, Faculty of Informatics, Masaryk University, Brno,
October 2000.

Digital Typography Donald E. Knuth. Published by the Center for
the Study of Language and Information (Stanford, California) CSLI
Lecture Notes, No. 78 (1999). ISBN 1575860104.

Printer’s Type in the Twentieth Century: Manufacturing And Design
Methods Richard Southall. Published by Oak Knoll Press (2005).
ISBN 1584561552.

History of the Monotype Corporation Judith Slinn et al. Published by
Vanbrugh Press (2014). ISBN 0993051005.

Templates

The following pages contain blank templates for answering problems 1.2,
1.3, 1.4, 2.1, 8.1, 8.2, and 8.3.

173

174 Templates

Problem 1.2

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

Problem 1.3

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

Templates 175

Problem 1.4

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

x

y

176 Templates

Problem 2.1

Templates 177

Problem 8.1

178 Templates

Problem 8.2

Templates 179

Problem 8.3

Colophon

This book was designed and typeset by the author using Donald
Knuth’s TEX system with Leslie Lamport’s LATEX macros in 10pt
Palatino Linotype, Computer Modern Sans, and Bera Sans Mono.
Diagrams were constructed using the tikz package, and the out-
put was prepared by the author as a PDF file for print and eBook
formats. In addition, the following packages were used: ragged2e,
blindtext, amsmath, etex, gensymb, lettrine, booktabs, placeins, titlesec,
makeidx, lineno, nameref, cleveref, xspace, comment, setspace, etoolbox,
forest, multicol, tocloft, float, caption, longtable, tabu, enumerate, calc,
textcomp, microtype, mathtools, hyperref, fancyhdr, emptypage, under-
score, upquote, fancyvrb, idxlayout, xcolor, textgreek. The cover uses
typefaces from the Adobe Garamond family.

The eBook was prepared from LATEX sources with latex4ht and
Calibre. The physical book was printed by On-Demand Publishing
LLC, a subsidiary of Amazon Inc. of Seattle, Washington.

181

Index

accented letter, 125
acid wash, 104
acid-resistant, 104
advancement, 126
Albrecht Dürer, 102
algorithm, 41

of deCasteljau, 20
aliasing, 8
ampersand, 16
ANSI, 58
antialiasing, 8
ASCII, 31
August Dvorak, 58

backslash, 33
backward compatibility, 35
baseline, 126
Bézier

Pierre, 17
Bézier curve, 17
billboard, 8
bit, 28, 69
bit pattern, 69
bold, 123
Braille, 38
burin, 102
burnishing, 104
byte, 29, 69

carriage return, 31
Cartesian coordinate, 1
Casteljau

Paul de, 17
chain, of curves, 18
character

accented, 33
printable, 31

checkerboard pattern, 100
Chinese tone, 63
Christopher Latham Scholes,

53
circle

from Bezier curves, 23
circular arc, 16
Citroën, 17
coated paper, 4
composing stick, 142
compression, 65

lossy, 74
computer program, 43
condition, 44
control point, 17
coordinate, 1
copper, 102
counter, 44
curve

continuous, 18
discontinuous, 18
flatness, 22
join, 18
smooth continuous, 18
subdivision, 20

Cyrillic, 33, 124

183

184 Index

Daily Graphic, 108
David A. Huffman, 72
de Casteljau

Paul, 17
demerit, 139
Densmore

James, 55
Descartes

René, 1
dictionary, 67
digital halftoning, 111
Dijkstra

Edsger, vii
dither, 111

ordered, 114
dots per inch, 3
Dürer

Albrecht, 102
Dvorak

August, 58
Dvorak keyboard, 58

eBook, 3, 34
Eckert-Mauchly Computer

Corporation, 60
EDSAC, 30
Edsger Dijkstra, vii
end-point, 17
engraving, 102
error diffusion, 118
escape character, 33
etching, 104
even-odd rule, 24
expression, 81

evaluating, 81

factorial, 86
false, 45, 84
fax, 72

compression, 72
Fermat

Pierre de, 1
filled shape, 9

fire signals, 27
Floyd

Robert W., 118
Franz Kafka, 135
french curves, 16
frequencies

of characters, 70
full justification, 136, 137
function, 84

galley, 143
glyph metrics, 126
gradient, 97
Greek alphabet, 27
grey tones, 97

halftone, 106
for colour, 114

halftone screen, 108
Han characters, 33
Hermann Zapf, 123
Huffman

David A., 72
Huffman encoding, 72
human optical system, 8
hyphenation, 137

dictionary based, 138

if. . . then . . . else, 44, 85
image

black and white, 98
grey, 98

indenting, 44
index, 41
inhibiting rule, 138
ink-flow, 114
input, 27

system, 61
insert, 91
intaglio, 101
interoperability, 29
italic, 34, 123

James Densmore, 55

INDEX

Joint Photographic Experts
Group, 75

JPEG, 75
justification

full, 136, 137

Kafka
Franz, 135

kerning, 127, 136
keyboard, 27, 53
keyword, 43

laser printer, 4
Latin alphabet, 61
leading, 136
ligature, 50, 124
line

antialiased, 8
drawing, 5

line feed, 31
Linear A, 39
lines per inch, 108
lining numbers, 124
Linotype, 123
list, 88

reversing, 90
sorting, 91

lossy compression, 74
Louis Steinberg, 118
lpi, 108

mark-up, 33
mezzotint, 102
microtypography, 139
Modern Greek, 61, 124
monitor, 8

negative, 106
newspaper, 3
newsprint, 3
niello, 102
non-zero rule, 24

old style numbers, 124
operand, 85
operator, 84
optical font size, 128
OR, 51
ordered dither, 114
origin, 2
orphan, 139
output, 27

Palatino, 15, 123
paragraph, 135
parameter, 43
parentheses

in an expression, 82
path, 18

containing a hole, 23
filling, 24
self-crossing, 24

pattern, 51
Paul de Casteljau, 17
PDF file, 3
photograph, 97, 106
phototypesetting, 144
Pierre Bézier, 17
Pierre de Fermat, 1
Pinyin, 61
pixel, 3, 15
plate, 101
point, 2
Polybius, 27
position, 1
prefix, 70
program, 43, 81
psuedocode, 43
pt, 2

QWERTY keyboard, 58

ragged-right, 137
Rembrandt van Rijn, 104
Remington & Sons, 53
René Descartes, 1

186 Index

resolution, 3
river, 141
Robert W. Floyd, 118
rocker, 104
rule-based hyphenation, 138
Russian characters, 33

Scholes, Christopher Latham,
53

Scrabble, 69
screen, 3
search, 41

engine, 51
function, 45

shape, 15
built from lines, 9
curved, 15
filling, 9
scaling, 16

shift key, 30
ship curves, 17
skipping rule, 49
small caps, 125
sort, 91
Stanford University, 118
Steinberg

Louis, 118
Steinway Hall, 108
stopping out, 104
sub-pixel, 8
subdivision, 22

tablet, 3
tag, 34
tail, 88
Talbot

William Henry Fox, 108
telegraph, 30

text block, 136
textual data, 27
Thai alphabet, 37
The Histories, 27
threshold, 98, 99
toner, 4
torch

for signalling, 28
tree, 82

root of, 82
true, 45, 84
typeface, 5, 15, 33
typesetting, 34
typewriter, 53

unambiguous decoding, 70
underfull line, 137
Unicode, 34
units, 2
UNIVAC, 60
universal compression, 66
University of Cambridge, 30
University of Washington, 58

value, 81
variable, 83
video

storage of, 5

Western language, 36
widow, 139
William Henry Fox Talbot,

108
woodblock, 100

Zapf
Hermann, 123

Zapfino, 127
Zhuyin, 62

If you have enjoyed this free book, please
leave a review on Amazon, or buy a paper

copy for yourself or a friend.

https://www.amazon.com/Machine-Made-this-Book-Sketches/dp/0957671121/
https://www.amazon.com/Machine-Made-this-Book-Sketches/dp/0957671121/
https://www.amazon.com/Machine-Made-this-Book-Sketches/dp/0957671121/

	Preface
	Putting Marks on Paper
	Letter Forms
	Storing Words
	Looking and Finding
	Typing it In
	Saving Space
	Doing Sums
	Grey Areas
	Our Typeface
	Words to Paragraphs
	Solutions
	Further Reading
	Templates
	Colophon
	Index

