Chapter 6

Prettier Printing

We have been printing out information using the built-in print function. Sometimes, however, we
have had to concatenate many little strings with + to insert into sentences the values we want to print,
or use inconvenient extra parameters like end="" to prevent default behaviour giving an undesirable
result. In this chapter, we will review the print function, and then explore a better method of printing
with Python.

Recalling the print function

The print function takes a value. If the value is not a string, it converts it to a string with str. Then, it
prints it to the screen and moves one line down by printing a newline character:

Python

>>> print('entrance')
entrance

>>> print(1)

1

>>> print([1, 2, 3])
[1, 2, 3]

We have sometimes suppressed the newline by using an end argument:

Python
>>> print('entrance', end='")
entrance>>>

Printing with separators

We can supply more or fewer arguments to the print function:

55

56 Chapter 6. Prettier Printing

Python
>>> print()

>>> print('one', 'two', 'three')
one two three

We see that print with no arguments just prints a newline. Supplying multiple arguments will print
them all out, separated by spaces. We can change the separator:

Python
>>> print('one', 'two', 'three', sep='-"')
one-two-three

Easier printing with format strings

The print function is useful, but becomes rather clumsy when we are doing more complicated
formatting. Python provides more advanced printing through what are called format strings. Here
is a function to print the minimum and maximum items in a list of numbers as we might write it
traditionally:

def print_stats(l):
print(str(min(l)) + ' up to ' + str(max(l)))

(We wrote our own minimum and maximum functions earlier, but they are in fact built in to Python).
Here it is in use:

Python
>>> print_stats([2, 3, 5, 7, 11, 13, 17, 19, 23, 29])
2 up to 29

Now, the same function using a format string:

def print_stats(l):
minimum = min(1)
maximum = max (1)
print (f'{minimum} up to {maximum}')

There are two things to notice. First, the use of f' to begin a string instead of just '. This denotes a
format string. Second, the sections inside the format string which are demarcated with curly braces
{...}. The variable names in these will be substituted for the values of those variables. In fact, we can
put whole expressions in the curly braces, simplifying further:

def print_stats(l):
print(f'{min(l)} up to {max(l)}')

Chapter 6. Prettier Printing 57

Even in this simple example, we can see that it is rather easier to read our program when written with
format strings, when compared with the repeated concatenation in the original. Consider a function to
print out a table of powers (the ** operator raises a number to a power):

def print_powers(n):
for x in range(l, n):
print(f'{x} {x xx 2} {x »x 3} {x *x 4} {x *x 5}')

Much like our times table in chapter 3, the columns are not lined up:

Python

>>> print_powers()
11111

2 4816 32

3 9 27 81 243

4 16 64 256 1024

5 25 125 625 3125

6 36 216 1296 7776
7 49 343 2401 16807
8 64 512 4096 32768
9 81 729 6561 59049

Format strings can do this for us automatically, with the addition of a format specifier within the curly
braces. We add :5d at the end of each one. The 5 is for the column width, and d for decimal integer —
the number will be right-justified in the column.

def print_powers(n):
for x in range(l, n):
print(f'{x:5d} {x **x 2:5d} {x **x 3:5d} {x ** 4:5d} {x **x 5:5d}')

Here is the result:

Python

>>> print_powers()
1 1 1 1
4 8 16 32

9 27 81 243
16 64 256 1024
25 125 625 3125
36 216 1296 7776
49 343 2401 16807
64 512 4096 32768
81 729 6561 59049

OCoOoNOOUAE WNRE

58 Chapter 6. Prettier Printing

Printing to a file

Instead of printing to the screen, we can print to a file by adding a file argument to the print
function:

def print_powers(n):
f = open('powers.txt', 'w')
for x in range(l, n):
print(f'{x:5d} {x **x 2:5d} {x **x 3:5d} {x **x 4:5d} {x *x 5:5d}', file=f)
f.close()

The function open here opens the new file 'powers.txt' for writing (hence 'w'). We then supply the
file argument to the print function. Afterward, we must be sure to close the file using the close
method on the file f. A cleaner method is to use the with ... as structure:

def print_powers(n):
with open('powers.txt', 'w') as f:
for x in range(l, n):
print(f'{x:5d} {x ** 2:5d} {x **x 3:5d} {x *x 4:5d} {x ** 5:5d}',
file=f)

The file will be closed automatically once the part of the program indented further to the right than the
with is complete, so there is no need for us to close it explicitly. In the questions, we will use format
strings to create some files of our own.

Common problems

We must remember to use the f prefix to our strings when using format strings, or we get the wrong
result:

Python
>>> p = 15
>>> q = 12

>>> print('Total is {p + q}')
Total is {p + q}

Here is what it should look like:

Python
>>> print(f'Total is {p + q}')
Total is 27

Quotation marks can end a format string, even when they are with the {} braces:

Chapter 6. Prettier Printing 59

Python
>>> def two(x): return x + x

>>> print(f'Twice is {two('twice')}"')
File "<stdin>", line 1
print(f'Twice is {two('twice')}"')

A

SyntaxError: invalid syntax
The solution is to use double quotation marks instead:

Python
>>> print(f"Twice is {two('twice')}")
Twice is twicetwice

Comments cannot appear inside braces:

Python

>>> print(f'This is the result: {result #update later}')
File "<stdin>", line 1

SyntaxError: f-string expression part cannot include '#'

Finally, when opening a new file for output with the with ...as ... construct, remember that we must
specify 'w'.

Python
>>> open('output.txt')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'output.txt'
>>> open('output.txt', 'w')

Summary

We have expanded our knowledge of the built-in print function beyond the simple uses we encoun-
tered before. We learned about the powerful notion of format strings, and how to use them to shorten
and simplify our code. Finally we printed to files, so our programs can now have effects persist even
when we close Python.

60

Chapter 6. Prettier Printing

Questions

1.

We can print a list like [1, 2, 3] easily using the print function. Imagine, though, that the
print function could not work on lists. Write your own print_list function which uses simple
print calls to print the individual elements, but adds the square brackets, commas and spaces
itself. Do so without using format strings.

2. Now rewrite your function using format strings. Which is easier to read and write?

3. The method rjust on strings will right-justify them to the given width.

Python
>>> '2' . rjust(5)
1 2I

Use this method to rewrite our print_powers function without format strings, but still with
properly lined-up columns.

. The method zfill on a string, given a number, will pad the string with zeroes to that width.

For example, '435"'.zfill(8) will produce 60000435. Modify your previous answer to use
this function to print our table of powers with uniform column widths padded by zeroes.

. Write a program which asks the user to type in a list of names, one per line, like Mr James Smith,

and writes them to a given file, again one per line, in the form Smith, John, Mr.

. Rewrite the function from the previous question using format strings, if you did not use them

the first time.

. Use the find function introduced the previous chapter to write a program which prints the

positions at which a given word is found in each of given list of sentences. For example, consider
this list:

['Three pounds of self-raising flour',
'Two pounds of plain flour',
'Six ounces of butter']

Your function, given this list and the string 'pound', should print:

pound found at position 6 in sentence 1
pound found at position 4 in sentence 2
pound not found in sentence 3

. Modify your answer to question 7 to print the information to a file with a given name.

	Prettier Printing

